Communications in Mathematical Physics

, Volume 105, Issue 1, pp 1–11 | Cite as

A classification of open string models



Open string models are classified using modular invariance. No good candidates for new models are found, though the existence of anE8 invariant model inR17, 1, a similar one inR5, 1 and of a supersymmetric model inR2, 1 cannot be excluded by this technique. An intriguing relation between the left moving and right moving sectors of the heterotic string emerges.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nahm, W.: Mass spectra of dual strings. Nucl. Phys. B114, 174 (1976)Google Scholar
  2. 2.
    Nahm, W.: Spin in the spectrum of states of dual models. Nucl. Phys. B120, 125 (1977)Google Scholar
  3. 3.
    Gross, D., Harvey, J., Martinec, E., Rohm, R.: Heterotic string theory (I). The free heterotic string. Phys. Rev. Lett.55, 502 (1985); Nucl. Phys. B256, 253 (1985)Google Scholar
  4. 4.
    Eichler, M., Zagier, D.: On the theory of Jacobi forms. Progress in Mathematics. Boston, MA: Birkhäuser 1985Google Scholar
  5. 5.
    Gunning, R.: Am. J. Math.78, 357 (1956)Google Scholar
  6. 6.
    Nahm, W.: Functional integrals for the partition functions of dual strings. Nucl. Phys. B124, 121 (1977)Google Scholar
  7. 7.
    Nahm, W.: A semiclassical calculation of the mass spectrum of relativistic strings. Nucl. Phys. B81, 164 (1974)Google Scholar
  8. 8.
    Kac, V.: Infinite dimensional Lie algebras. Boston, MA: Birkhäuser 1983Google Scholar
  9. 9.
    Gliozzi, F., Olive, D., Scherk, J.: Supersymmetry, supergravity theories, and the dual spinor model. Nucl. Phys. B122, 253 (1977)Google Scholar
  10. 10.
    Green, M., Schwarz, J.: Covariant description of superstrings. Phys. Lett.136B, 367 (1984)Google Scholar
  11. 11.
    Gunning, R.: Lectures on modular forms. Princeton, NJ: Princeton University Press 1962Google Scholar
  12. 12.
    Casher, A., Englert, F., Nicolai, H., Taormina, A.: Consistent superstrings as solutions of theD=26 bosonic string theory. Phys. Lett.162B, 121 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. Nahm
    • 1
  1. 1.Physikalisches Institut der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations