Advertisement

Communications in Mathematical Physics

, Volume 86, Issue 3, pp 391–418 | Cite as

Calculation of norms of Bethe wave functions

  • V. E. Korepin
Article

Abstract

A class of two dimensional completely integrable models of statistical mechanics and quantum field theory is considered. Eigenfunctions of the Hamiltonians are known for these models. Norms of these eigenfunctions in the finite box are calculated in the present paper. These models include in particular the quantum nonlinear Schrödinger equation and the HeisenbergXXZ model.

Keywords

Neural Network Statistical Physic Wave Function Field Theory Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethe, H.: Z. Phys.71, 205–226 (1931)Google Scholar
  2. 2.
    Yang, C.N., Yang, C.P.: Phys. Rev.150, 321–327 (1966)Google Scholar
  3. 3.
    Lieb, E.H.: Phys. Rev. Lett.18, 692–694 (1967)Google Scholar
  4. 4.
    Berezin, F.A., Pokhil, C.P., Finkelberg, V.M.: Vestn. Mosk. Gos. Univ. Ser.1.1, 21–28 (1964)Google Scholar
  5. 5.
    McGuire, J.B.: J. Math. Phys.5, 622–636 (1964);Google Scholar
  6. 5a.
    Brézin, E., Zinn-Justin, J.: C.R. Acad. Sci. Paris263, 670–673 (1966);Google Scholar
  7. 5b.
    Gaudin, M.: J. Math. Phys.12, 1674–1676, 1677–1680 (1971)Google Scholar
  8. 6.
    Faddeev, L.D.: Sov. Sci. Rev. Math. Phys. C1, 107–160 (1981)Google Scholar
  9. 7.
    Faddeev, L.D., Takhtajan, L.A.: Usp. Mat. Nauk34, 13–63 (1979)Google Scholar
  10. 8.
    Gaudin, M.: Preprint, Centre d'Etudes Nucleaires de Saclay, CEA-N-1559, (1), (1972)Google Scholar
  11. 9.
    Gaudin, M., McCoy, B.M., Wu, T.T.: Phys. Rev. D23, 417–419 (1981)Google Scholar
  12. 10.
    Baxter, R.J.: J. Stat. Phys.9, 145–182 (1973)Google Scholar
  13. 11.
    Izergin, A.G., Korepin, V.E.: Lett. Math. Phys. (to be published)Google Scholar
  14. 12.
    Faddeev, L.D., Sklyanin, E.K.: Dokl. Akad. Nauk SSSR243, 1430–1433 (1978)Google Scholar
  15. 13.
    Sklyanin, E.K.: Dokl. Akad. Nauk SSSR244, 1337–1341 (1978)Google Scholar
  16. 14.
    Izergin, A.G., Korepin, V.E., Smirnov, F.A.: Teor. Mat. Fiz.48, 319–323 (1981)Google Scholar
  17. 15.
    Sklyanin, E.K.: Zap. Nauchn. Seminarov LOMI95, 55–128 (1980)Google Scholar
  18. 16.
    Izergin, A.G., Korepin, V.E.: Dokl. Akad. Nauk SSSR259, 76–79 (1981)Google Scholar
  19. 17.
    Izergin, A.G., Korepin, V.E.: Nucl. Phys. B, Field Theory and Statistical Systems B205 [FS5], 401–413 (1982)Google Scholar
  20. 18.
    Izergin, A.G., Korepin, V.E.: Lett. Math. Phys.5, 199–205 (1981)Google Scholar
  21. 19.
    Baxter, R.J.: Stud. Appl. Math.L50, 51–67 (1971)Google Scholar
  22. 20.
    Belavin, A.A.: Phys. Lett. B87, 117–121 (1980)Google Scholar
  23. 21.
    Kulish, P.P.: Physica D3, 246–257 (1981)Google Scholar
  24. 22.
    Faddeev, L.D., Takhtajan, L.A.: Zap. Nauchn. Seminarov LOMI109, 134–178 (1981)Google Scholar
  25. 23.
    Baxter, R.J.: Philos. Trans. Soc. London, Ser. A289, 315–346 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • V. E. Korepin
    • 1
  1. 1.Service de Physique Théorique, Division de la PhysiqueC.E.N.-Saclay, Orme des MerisiersGif-sur-Yvette CedexFrance

Personalised recommendations