Advertisement

Communications in Mathematical Physics

, Volume 86, Issue 3, pp 375–390 | Cite as

Translation invariant equilibrium states of ferromagnetic Abelian lattice systems

  • Charles-Edouard Pfister
Article

Abstract

The structure of the set of all translation invariant equilibrium states is determined for all temperatures, for which the free energy is differentiable. Models with several phase transitions are discussed rigorously.

Keywords

Neural Network Phase Transition Free Energy Statistical Physic Equilibrium State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slawny, J.: Low temperature behavior of ferromagnets. Commun. Math. Phys.35, 297–305 (1974)Google Scholar
  2. 2.
    Lebowitz, J.L.: Coexistence of phases in Ising ferromagnets. J. Stat. Phys.16, 463–476 (1977); see also Gruber C., Lebowitz, J.L.: On the equivalence of different order parameters and coexistence of phases for Ising ferromagnet. II. Commun. Math. Phys.59, 97 (1978)Google Scholar
  3. 3.
    Lebowitz, J.L.: Number of phases in one component ferromagnets. In: Mathematical Problems in Theoretical Physics Proceedings, Rome 1977, 68–80. Lecture Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  4. 4.
    Bricmont, J., Lebowitz, J.L., Pfister, C.-E.: Periodic Gibbs states of ferromagnetic spin systems. J. Stat. Phys.24, 269–277 (1981)Google Scholar
  5. 5.
    Fröhlich, J., Pfister, C.-E.: In preparationGoogle Scholar
  6. 6.
    Ginibre, J.: General formulation of Griffith's inequalities. Commun. Math. Phys.16, 310–328 (1970)Google Scholar
  7. 7.
    Messager, A., Miracle-Sole, S., Pfister, C.-E.: Correlation inequalities and uniqueness of the equilibrium state for the plane rotator ferromagnetic model. Commun. Math. Phys.58, 19–29 (1978)Google Scholar
  8. 8.
    Israel, R.B.: Convexity in the theory of lattice gases. Princeton, New Jersey: Princeton University Press 1979Google Scholar
  9. 9.
    Kotecký, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys.83, 493–515 (1982)Google Scholar
  10. 10.
    Dobrushin, R.L., Shlosman, S.B.: Phases corresponding to the local energy minima. Preprint, 1981Google Scholar
  11. 11.
    Ashkin, J., Teller, E.: Statistics of two-dimensional lattices with four components. Phys. Rev.64, 178–184 (1943)Google Scholar
  12. 12.
    Pfister, C.-E.: Phase transitions in the Ashkin-Teller model. J. Stat. Phys. (submitted)Google Scholar
  13. 13.
    Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional abelian spin system and the Coulomb gas. Commun. Math. Phys.81, 527–602 (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Charles-Edouard Pfister
    • 1
  1. 1.Département de MathématiquesEcole Polytechnique FédéraleLausanneSuisse

Personalised recommendations