Skip to main content
Log in

Orthogonality properties of iterated polynomial mappings

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a measure defined on a complex contour and its associated orthogonal polynomials. The action of a polynomial transformation on the measure and the transformation laws of the corresponding orthogonal polynomials are given. Iterating the transformation provides an invariant measure, whose support is the Julia set corresponding to the polynomial transformation. It appears that, up to a constant, the iterated polynomials generated by the initial mapping form a subset of the invariant set of orthogonal polynomials, which fulfill a three term recursion relation. An algorithm is given to compute the coefficients of this recursion relation, which can be interpreted as a linear extension of the iterative procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys.20, 167–192 (1971)

    Google Scholar 

  2. Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys.53, 653–654 (1981)

    Google Scholar 

  3. Collet, P., Eckmann, J.P.: Iterated maps on the interval as dynamical systems. Progress in physics, Vol. 1, Boston: Birkhäuser 1980

    Google Scholar 

  4. May, R.M.: Simple mathematical models with very complicated dynamics. Nature261, 459–467 (1976)

    PubMed  Google Scholar 

  5. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys.19, 25–52 (1978) and: The universal metric properties of nonlinear transformations. J. Stat. Phys.21, 669–706 (1979)

    Google Scholar 

  6. See for instance: Libchaber, A., Maurer, J.: Une expérience de Rayleigh-Bénard de géométrie réduite; multiplication, accrochage, et démultiplication de fréquences. J. Phys. (Paris) Coll. C3, 51–56 (1980)

    Google Scholar 

  7. Derrida, B., Gervois, A., Pomeau, Y.: Universal properties of bifurcations of endomorphisms. J. Phys. A: Math. Gen12, 269–296 (1979)

    Google Scholar 

  8. Julia, G.: Mémoire sur l'itération des fonctions rationnelles. J. Math., Ser. 7 (Paris)4, 47–245 (1918)

    Google Scholar 

  9. Fatou, P.: Sur les équations fonctionelles. Bull. Soc. Math. France47, 161–271 (1919);48, 33–94 (1920);48, 208–314 (1920)

    Google Scholar 

  10. Brolin, H.: Invariants sets under iteration of rational functions. Ark. Mat.6, 103–144 (1965)

    Google Scholar 

  11. Myrberg, P.J.: Sur l'iteration des polynômes réels quadratiques. J. Math. Pures Appl.41, 339–351 (1962)

    Google Scholar 

  12. Douady, A., Hubbard, J.H.: Iteration des polynômes quadratiques complexes. C.R. Acad. Sci. (Paris)294, Série I, 123–126 (1982)

    Google Scholar 

  13. Ruelle, D.: Application conservant une mesure absolument continue par rapport àdx sur [0, 1]. Commun. Math. Phys.55, 47–51 (1977)

    Google Scholar 

  14. Barnsley, M.F., Bessis, D., Moussa, P.: The diophantine moment problem and the analytic structure in the activity of the ferromagnetic Ising model. J. Math. Phys.20, 535–546 (1979)

    Google Scholar 

  15. Moussa, P.: Problème diophantien des moments et modèle d'Ising. Accepted for publication in Annales de l'Institut Henri Poincaré

  16. Bessis, D., Mehta, M.L., Moussa, P.: Polynômes orthogonaux sur des ensembles de Cantor et iterations des transformations quadratiques. C.R. Acad. Sci. (Paris)293, Série I, 705–708 (1981)

    Google Scholar 

  17. Bessis, D., Mehta, M.L., Moussa, P.: Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings. Lett. Math. Phys.6, 123–140 (1982)

    Google Scholar 

  18. Barnsley, M.F., Geronimo, J.S., Harrington, A.N.: On the invariant sets of a family of quadratic maps. Commun. Math. Phys.88, 479–501 (1983)

    Google Scholar 

  19. Szegö, G.: Orthogonal polynomials. American Mathematical Society Colloquium Publication23, 1939

  20. Baker, G.A. Jr.: The essential of Padé approximants. New York: Academic Press 1978

    Google Scholar 

  21. Titchmarsh, E.C.: The theory of functions, p. 168. Oxford: Oxford University Press 1932

    Google Scholar 

  22. See for instance: Solitons, Bullough, R.K., Caudrey, P.J. (eds.): Topics in current physics, Vol. 17. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  23. Bellissard, J., Bessis, D., Moussa, P.: Chaotic states of almost periodic Schrödinger operators. Phys. Rev. Lett.49, 701–704 (1982)

    Google Scholar 

  24. Barnsley, M.F., Geronimo, J.S., Harrington, A.N.: Orthogonal polynomials associated with invariant measures on Julia sets. Bull. Am. Math. Soc.7, 381–384 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O.E. Lanford

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessis, D., Moussa, P. Orthogonality properties of iterated polynomial mappings. Commun.Math. Phys. 88, 503–529 (1983). https://doi.org/10.1007/BF01211956

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211956

Keywords

Navigation