Skip to main content

The spectrum of a Schrödinger operator inL p v isp-independent

Abstract

LetH p =−1/2Δ+V denote a Schrödinger operator, acting inL p v, 1≦p≦∞. We show that σ(H p )=σ(H 2) for allp∈[1, ∞], for rather general potentialsV.

This is a preview of subscription content, access via your institution.

References

  1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math.35, 209–273 (1982)

    Google Scholar 

  2. Auterhoff, J.: Interpolationseigenschaften des Spektrums linearer Operatoren aufL P -Räumen. Math. Z.184, 397–406 (1983)

    Google Scholar 

  3. Devinatz, A.: Schrödinger operators with singular potentials. J. Oper. Theory4, 25–35 (1980)

    Google Scholar 

  4. Dunford, N., Pettis, B. J.: Linear operations on summable functions. Trans. Am. Math. Soc.47, 323–392 (1940)

    Google Scholar 

  5. Hempel, R., Voigt, J.: On theL p-spectrum of Schrödinger operators. J. Math. Anal. Appl. (to appear)

  6. Jörgens, K.: Lineare Integraloperatoren. Stuttgart: B. G. Teubner, 1970

    Google Scholar 

  7. Kato, T.: Perturbation theory for linear operators. Second edition. Berlin Heidelberg, New York: Springer 1976

    Google Scholar 

  8. Reed, M., Simon, B.: Methods of modern mathematical physics I: Functional analysis. Revised and enlarged edition. New York: Academic Press 1980

    Google Scholar 

  9. Reed, M., Simon, B.: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. New York: Academic Press 1975

    Google Scholar 

  10. Sigal, I. M.: A generalized Weyl theorem andL P -spectra of Schrödinger operators. Preprint

  11. Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979

    Google Scholar 

  12. Simon, B.: Brownian motion,L P properties of Schrödinger operators and the localization of binding. J. Funct. Anal.35, 215–225 (1980)

    Google Scholar 

  13. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. New Ser.7, 447–526 (1982)

    Google Scholar 

  14. Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hempel, R., Voigt, J. The spectrum of a Schrödinger operator inL p v isp-independent. Commun.Math. Phys. 104, 243–250 (1986). https://doi.org/10.1007/BF01211592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211592

Keywords

  • Neural Network
  • Statistical Physic
  • Complex System
  • Nonlinear Dynamics
  • Quantum Computing