Skip to main content
Log in

Absence of charged states in the U(1) Higgs lattice gauge theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a sequence of dipole states of finite energy introduced by Fredenhagen and Marcu is chargeless upon removal of one of the charges to spatial infinity in certain subsets of the phase diagram of the U(1)-Higgs lattice gauge theory. It is also explicitly seen how this phenomenon is related to the existence of exponential clustering (i.e., of a mass gap). Related properties of dipole states are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fredenhagen, K., Marcu, M.: Charged states in Z2 gauge theories. Commun. Math. Phys.92, 81–119 (1983)

    Google Scholar 

  2. Swieca, J.A.: Charge screening and mass spectrum. Phys. Rev. D13, 312–314 (1976)

    Google Scholar 

  3. Buchholz, D., Fredenhagen, K.: Charge screening and mass spectrum in abelian gauge theories. Nucl. Phys. B154, 226–238 (1979)

    Google Scholar 

  4. Swieca, J.A.: Solitons and confinement. Forts. Phys.25, 303–326 (1977)

    Google Scholar 

  5. Lowenstein, J.H., Swieca, J.A.: Quantum electrodynamics in two dimensions. Ann. Phys. (N.Y.)68, 172–195 (1971)

    Google Scholar 

  6. Barata, J.C.A.: M.Sc. Thesis, Institute of Physics, University of São Paulo (unpublished)

  7. Borgs, C., Seiler, E.: Lattice Yang-Mills theory at nonzero temperature and the confinement problem. Commun. Math. Phys.91, 329–380 (1983)

    Google Scholar 

  8. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  9. Becher, P.: The Schwinger model: a view from the temporal gauge. Ann. Phys. (N.Y.)146, 223–261 (1983)

    Google Scholar 

  10. Raina, A.K., Wanders, G.: The gauge transformations of the Schwinger model. Ann. Phys. (N.Y.)132, 404–426 (1981)

    Google Scholar 

  11. Bratelli, O., Robinson, D.W.: Operator algebras and statistical mechanics. I, II. Berlin, Heidelberg, New York: Springer 1981, 1982

    Google Scholar 

  12. Swieca, J.A.: In Cargèse lectures in physics, Vol. 4, D. Kastler (ed.). New York: Gordon and Breach 1970

    Google Scholar 

  13. Rothe, H., Rothe, K.D., Swieca, J.A.: Screening versus confinement. Phys. Rev. D19, 3020 (1979)

    Google Scholar 

  14. Dosch, H.G., Mueller, V.F.: Vacuum polarization effects in lattice gauge theories. Nucl. Phys. B158, 419 (1979)

    Google Scholar 

  15. Requardt, M.: About the poor decay of certain cross-correlation functions in the statistical mechanics of phase transitions in the static and dynamical regime. J. Stat. Phys.29, 117 (1982)

    Google Scholar 

  16. Fredenhagen, K., Marcu, M.: A confinement criterion for QCD with dynamical quarks. DESY preprint 85–028 (January 1985)

  17. Fredenhagen, K.: On the existence of the real time evolution in Euclidean lattice gauge theories. DESY preprint 85–028 (April 1985)

  18. Streater, R.F.: The Heisenberg ferromagnet as a quantum field theory. Commun. Math. Phys.6, 233 (1967)

    Google Scholar 

  19. Wreszinski, W.F.: Goldstone's theorem for quantum spin systems of finite range. J. Math. Phys.17, 109 (1976)

    Google Scholar 

  20. Requardt, M.: Dynamical cluster properties in the quantum statistical mechanics of phase transitions. J. Phys. A13, 1769 (1980)

    Google Scholar 

  21. Bricmont, J., Fröhlich, J.: Statistical mechanical methods in particle structure analysis of lattice field theories (I). General theory. Nucl. Phys. B251 [FS13], 517 (1985); and II. Scalar and surface models. Commun. Math. Phys.98, 553 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Osterwalder

Supported by the Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Address after September 1985: II. Institut für Theoretische Physik der Universität Hamburg, Luruper Chaussee 149, D-2000 Hamburg 50, Federal Republic of Germany

Supported by FAPESP. Permanent address: Instituto de Fisica, Universidade de São Paulo, São Paulo, Brazil

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barata, J.C.A., Wreszinski, W.F. Absence of charged states in the U(1) Higgs lattice gauge theory. Commun.Math. Phys. 103, 637–668 (1986). https://doi.org/10.1007/BF01211168

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211168

Keywords

Navigation