Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 2, pp 281–290 | Cite as

Translation invariant Gibbs states in theq-state Potts model

  • D. H. Martirosian
Article

Abstract

We describe the set of all translation invariant Gibbs states in theq-state Potts model for the case ofq large enough and the other parameters to be arbitrary.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Potts Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kotecky, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys.83, 493–515 (1982)Google Scholar
  2. 2.
    Dinaburg, E.I., Sinai, Ya.G.: Interacting contour models and their applications. Tr. Conf. Mat. Fiz., Dubna, August (1984) (in Russian)Google Scholar
  3. 3.
    Bricmont, J., Kuroda, K., Lebowitz, J.L.: First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory. Commun. Math. Phys. (in press)Google Scholar
  4. 4.
    Laanait, L., Messager, A., Ruiz, J.: Phases coexistence and surface tensions for the Potts model. Commun. Math. Phys. (in press)Google Scholar
  5. 5.
    Sinai, Ya. G.: Theory of phase transitions: Rigorous results. Oxford, New York: Pergamon Press 1982Google Scholar
  6. 6.
    Minlos, R.A., Sinai, Ya. G.: Tr. Mosk. Math. Obshch.17, 213–242 (1967) (in Russian)Google Scholar
  7. 7.
    Gallavoti, G., Miracle-Sole, S.: Equilibrium states of the Ising model in the two-phase region. Phys. Rev. B5, 2555–2559 (1972)Google Scholar
  8. 8.
    Martirosian, D.G.: Izv. Akad. Nauk Arm. SSR, Mat.14, 21–41 (1979) (in Russian) [English transl.: Periodic Gibbs states for classical lattice models. Sov. J. Contemp. Math. Anal.14, 19–38 (1979)]Google Scholar
  9. 9.
    Zahradnik, M.: An alternate version of Pirogov-Sinai theory. Commun. Math. Phys.93, 559–581 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • D. H. Martirosian
    • 1
  1. 1.Institute of MathematicsArmenian Academy of SciencesYerevanUSSR

Personalised recommendations