Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 2, pp 259–280 | Cite as

Asymptotic completeness for a quantum particle in a Markovian short range potential

  • Claude-Alain Pillet
Article

Abstract

Absence of bound states and asymptotic completeness are proven for a quantum particle in a time dependent random (Markovian) short range potential. Systems with confining potentials are also considered and unboundedness of the energy in time is shown.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Short Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pillet, C. A.: Some results on the quantum dynamics of a particle in a Markovian potential. Commun. Math. Phys.102, 237–254 (1985)Google Scholar
  2. 2.
    Enss, V.: In: Rigorous atomic and molecular physics. Velo G., Wightman, A. S. (eds.), New York: Plenum Press 1980/81Google Scholar
  3. 3.
    Ginibre, J.: La méthode “dépendent du temps” dans le problème de la complétude asymptotique, exposé présenté à l'Institut de Recherches Mathématiques Avancées de l'Université de Strasbourg, Mai 79, preprint 1980Google Scholar
  4. 4.
    Jafaev, D. R.: preprint Leningrad Branch Mathematical Institute E-2-79, 1979Google Scholar
  5. 5.
    Jafaev, D. R.: Sov. Math. Dokl.21, 545–549 (1980)Google Scholar
  6. 6.
    Kato, T.: J. Fac. Sci. Univ. Tokyo, Sect. I A Math.17, 241–258 (1970)Google Scholar
  7. 7.
    Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979Google Scholar
  8. 8.
    Reed, M., Simon, B.: Scattering theory. New York: Academic Press 1979Google Scholar
  9. 9.
    Reed, M., Simon, B.: Fourier analysis, self adjointness. New York: Academic Press 1975Google Scholar
  10. 10.
    Titchmarsh, E. C.: The theory of functions. London: Oxford University Press 1959Google Scholar
  11. 11.
    Simon, B.: Trace ideal methods. New York: Cambridge University Press 1979Google Scholar
  12. 12.
    Bergh, J., Löfström, J.: Interpolation spaces. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  13. 13.
    Reed, M., Simon, B.: Analysis of operators. New York: Academic Press 1978Google Scholar
  14. 14.
    Yajima, K.: A multi-channel scattering theory for some time-dependent Hamiltonians, charge transfer problem. Commun. Math. Phys.75, 153–178 (1980)Google Scholar
  15. 15.
    Reed, M., Simon, B.: Functional analysis. New York: Academic Press 1980Google Scholar
  16. 16.
    Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications I. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  17. 17.
    Hagedorn, G., Loss, M., Slawny, J.: to appear in J. Phys. AGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Claude-Alain Pillet
    • 1
  1. 1.Theoretical Physics, ETH-HönggerbergZürichSwitzerland

Personalised recommendations