Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 2, pp 221–238 | Cite as

Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures

  • J. T. Chayes
  • L. Chayes
Article

Abstract

We prove that the self-avoiding walk has Ornstein-Zernike decay and some related properties for all noncritical temperatures at which the model is defined.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ornstein, L. S., Zernike, F.: Proc. Acad. Sci. (Amst.)17, 793 (1914)Google Scholar
  2. 2.
    Abraham, D. B., Kunz, H.: Ornstein-Zernike theory of classical fluids at low density. Phys. Rev. Lett.39, 1011 (1977)Google Scholar
  3. 3.
    Paes-Leme, P. J.: Ornstein-Zernike and analyticity properties for classical lattice spin systems. Ann. Phys. (N.Y.)115, 367 (1978)Google Scholar
  4. 4.
    Schor, R. S.: The particle structure ofv-dimensional Ising models at low temperatures. Commun. Math. Phys.59, 213 (1978)Google Scholar
  5. 5.
    Simon, B.: The rate of falloff of Ising model correlations at large temperature. J. Stat. Phys.26, 53 (1981)Google Scholar
  6. 6.
    Schor, R. S.: Existence of glueballs in strongly coupled lattice gauge theories. Nucl. Phys. B.222, 71 (1983)Google Scholar
  7. 7.
    Schor, R. S.: Excited glueball states on a lattice from first principles. Phys. Lett. B132, 161 (1983)Google Scholar
  8. 8.
    Schor, R. S.: Glueball spectroscopy in strongly coupled lattice gauge theories. Commun. Math. Phys.92, 369 (1984)Google Scholar
  9. 9.
    Abraham, D. B., Chayes, J. T., Chayes, L.: Statistical mechanics of lattice tubes. Phys. Rev. D30, 841 (1984)Google Scholar
  10. 10.
    Abraham, D. B., Chayes, J. T., Chayes, L.: Random surface correlation functions. Commun. Math Phys.96, 439 (1984)Google Scholar
  11. 11.
    Abraham, D. B., Chayes, J. T., Chayes, L.: Nonperturbative analysis of a model of random surfaces. Nucl. Phys. B251, [FS13], 553 (1985)Google Scholar
  12. 12.
    Bricmont, J., Fröhlich, J.: An order parameter distinguishing between different phases of lattice gauge theories with matter fields. Phys. Lett. B122, 73 (1983)Google Scholar
  13. 13.
    Bricmont, J., Fröhlich, J.: Statistical mechanical methods in particle structure analysis of lattice field theories. Part 1: General results. Nucl. Phys. B251, [FS13], 517 (1985)Google Scholar
  14. 14.
    Bricmont, J., Fröhlich, J.: Statistical mechanical methods in particle structure analysis of lattice field theories. Part II: Scalar and surface models. Commun. Math. Phys.98, 553 (1985)Google Scholar
  15. 15.
    O'Carroll, M.: Analyticity properties and a convergent expansion for the inverse correlation length of the high-temperatured-dimensional Ising model. J. Stat. Phys.34, 597 (1984)Google Scholar
  16. 16.
    O'Carroll, M., Barbosa, W. D.: Analyticity properties and a convergent expansion for the inverse correlation length of the low-temperatured-dimensional Ising model. J. Stat. Phys.34, 609 (1984)Google Scholar
  17. 17.
    O'Carroll, M.: A convergent perturbation theory for particle masses in “Euclidean” lattice quantum field theory applied to thed-dimensional Ising model. Phys. Lett. B143, 188 (1984)Google Scholar
  18. 18.
    O'Carroll, M., Braga, G.: Analyticity properties and a convergent expansion for the glueball mass and dispersion curve of strongly coupled Euclidean 2+1 lattice gauge theories. J. Math. Phys.25, 2741 (1984)Google Scholar
  19. 19.
    O'Carroll, M., Braga, G., Schor, R. S.: Mass spectrum and mass splitting in 2+1 strongly coupled lattice gauge theories (Preprint)Google Scholar
  20. 20.
    O'Carroll, M., Braga, G.: Convergent expansions for glueball masses in 3+1 strongly coupled lattice gauge theories (Preprint)Google Scholar
  21. 21.
    O'Carroll, M.: Convergent expansions for excited glueball masses in 2+1 strongly coupled lattice gauge theories. (Preprint)Google Scholar
  22. 22.
    Chayes, J. T., Chayes, L.: Random tubes as a model of pair correlations. Contemp. Math.41, 11 (1985)Google Scholar
  23. 23.
    Chayes, J. T., Chayes, L.: Percolation and random media. In: Critical phenomena, random systems and gauge theories, Les Houches, Session, XLIII, K. Osterwalder and R. Stora, (eds) Amsterdam, Oxford, New York: Elsevier (1986)Google Scholar
  24. 24.
    Fisher, M. E.: Correlation functions and the critical region of simple fluids. J. Math. Phys.5, 944 (1964)Google Scholar
  25. 25.
    Aizenman, M.: Geometric analysis of ϕ4 fields and Ising models. Parts 1 and II. Commun. Math. Phys.86, 1 (1982)Google Scholar
  26. 26.
    Fröhlich, J.: On the triviality of λϕd4 theories and the approach to the critical point ind > 4 dimensions. Nucl. Phys. B200, [FS4], 281 (1982)Google Scholar
  27. 27.
    Hammersley, J. M.: Percolation processes. II. The connective constant. Proc. Camb. Phil. Soc.53, 642 (1957)Google Scholar
  28. 28.
    Simon, B.: Correlation inequalities and decay of correlations in ferromagnets. Commun. Math. Phys.77, 111 (1980)Google Scholar
  29. 29.
    Aizenman, M., Newman, C. M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys.36, 107 (1984)Google Scholar
  30. 30.
    Bovier, A., Felder, G., Fröhlich, J.: On the critical properties of Edwards and self-avoiding walk models of polymer chains. Nucl. Phys. B230 [FS10], 119 (1984)Google Scholar
  31. 31.
    Lieb, E. H.: A refinement of Simon's correlation inequality. Commun. Math. Phys.77, 127 (1980)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. T. Chayes
    • 1
  • L. Chayes
    • 1
  1. 1.Department of Mathematics and PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations