Communications in Mathematical Physics

, Volume 105, Issue 2, pp 153–188 | Cite as

Volume dependence of the energy spectrum in massive quantum field theories

II. Scattering states
  • M. Lüscher


The low-lying energy values associated to energy eigenstates describing two stable particles enclosed in a (space-like) box of sizeL are shown to be expandable in an asymptotic power series of 1/L. The coefficients in these expansions are related to the appropriate elastic scattering amplitude in a simple and apparently universal manner. At low energies, the scattering amplitude can thus be determined, if an accurate calculation of two-particle energy values is possible (by numerical simulation, for example).


Neural Network Field Theory Quantum Field Theory Energy Spectrum Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lüscher, M.: Volume dependence of the energy spectrum in massive quantum field theories, I. Stable particle states. Commun. Math. Phys.104, 177–206 (1986)Google Scholar
  2. 2.
    Lüscher, M.: On a relation between finite size effects and elastic scattering processes. In: Progress in gauge field theory. G.'t Hooft et al. (eds.) (Cargèse 1983). New York: Plenum Press 1984Google Scholar
  3. 3.
    Huang, K., Yang, C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev.105, 767 (1957)Google Scholar
  4. 4.
    Hamber, H.W., Marinari, E., Parisi, G., Rebbi, C.: Considerations on numerical analysis of QCD. Nucl. Phys. B225 [FS 9], 475 (1983)Google Scholar
  5. 4a.
    Parisi, G.: The strategy for computing the hadronic mass spectrum. Phys. Rep.103, 203 (1984)Google Scholar
  6. 5.
    Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. 1. New York: Academic Press 1964Google Scholar
  7. 6.
    Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969Google Scholar
  8. 7.
    Martin, B.R., Morgan, D., Shaw, G.: Pion-pion interactions in particle physics. New York: Academic Press 1976Google Scholar
  9. 8.
    Gasser, J., Leutwyler, H.: Chiral perturbation theory to one loop. Ann. Phys.158, 142 (1984)Google Scholar
  10. 9.
    Höhler, G., Kaiser, F., Koch, R., Pietarinen, E.: Handbook of pion-nucleon scattering. Physics Data 12-1, Fachinformationszentrum Karlsruhe (1979)Google Scholar
  11. 10.
    Bethe, H.A., Morrison, Ph.: Elementary nuclear theory. New York: Wiley 1956Google Scholar
  12. 11.
    Münster, G.: The size of finite size effects in lattice gauge theories. Nucl. Phys. B249, 659 (1985)Google Scholar
  13. 12.
    Bros, J.:r-particle irreducible kernels, asymptotic completeness, and analyticity properties of several particle collision amplitudes. In: Mathematical Physics VII (Boulder 1983). Britten, W.E. et al. (eds.). Amsterdam: North-Holland 1984Google Scholar
  14. 13.
    Symanzik, K.: Continuum limit and improved action in lattice theories, I. Principles and φ4 theory. Nucl. Phys. B226, 187 (1983)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Lüscher
    • 1
  1. 1.Theory DivisionDeutsches Elektronen-Synchrotron DESYHamburg 52Federal Republic of Germany

Personalised recommendations