Skip to main content
Log in

On the curvature of piecewise flat spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider analogs of the Lipschitz-Killing curvatures of smooth Riemannian manifolds for piecewise flat spaces. In the special case of scalar curvature, the definition is due to T. Regge; considerations in this spirit date back to J. Steiner. We show that if a piecewise flat space approximates a smooth space in a suitable sense, then the corresponding curvatures are close in the sense of measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendoerfer, C.B., Weil, A.: The Gauss-Bonnet theorem for Riemannian polyhedra. Trans. Am. Math. Soc.53, 101–129 (1943)

    Google Scholar 

  2. Banchoff, T.: Critical points and curvature for embedded polyhedra. J. Diff. Geom.1, 245–256 (1967)

    Google Scholar 

  3. Brin, I.A.: Gauss-Bonnet theorems for polyhedrons. Uspekhi Mat. NaukIII, 226–227 (1948) (in Russian)

    Google Scholar 

  4. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Diff. Geom.18 (1983)

  5. Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Amsterdam: North-Holland 1975

    Google Scholar 

  6. Cheeger, J., Müller, W., Schrader, R.: In: Unified theories of elementary particles (Heisenberg Symposium 1981). Lecture Notes in Physics. Breitenlohner, P., Dürr, H.P. (eds.). Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  7. Cheeger, J., Müller, W., Schrader, R.: In preparation

  8. Chern, S.S.: On the kinematic formula in integral geometry. J. Math. Mech.16, 101–118 (1966)

    Google Scholar 

  9. Collins, P.A., Williams, R.M.: Application of Regge calculus to the axially symmetric initial-value problem in general relativity. Phys. Rev. D5, 1908–1912 (1972)

    Google Scholar 

  10. Collins, P.A., Williams, R.M.: Dynamics of the Friedmann universe using Regge calculus. Phys. Rev. D7, 965–961 (1973)

    Google Scholar 

  11. Collins, P.A., Williams, R.M.: Regge-calculus model for the Tolman universe. Phys. Rev. D10, 3537–3538 (1974)

    Google Scholar 

  12. Donnelly, H.: Heat equation and the volume of tubes. Invent. Math.29, 239–243 (1975)

    Google Scholar 

  13. Ebin, D.G.: In: Global analysis. Proceedings of Symposium in Pure Mathematics, Vol. XV. Providence, RI: American Mathematical Society 1970

    Google Scholar 

  14. Freudenthal, H.: Simplizialzerlegung von beschränkter Flachheit. Ann. Math.43, 580–582 (1942)

    Google Scholar 

  15. Fröhlich, J.: IHES preprint 1981 (unpublished)

  16. Gilkey, P.B.: The index theorem and the heat equation. Boston: Publish or Perish 1974

    Google Scholar 

  17. Gilkey, P.B.: The boundary integrand in the formula for the signature and Euler characteristic of a Reimannian manifold with boundary. Adv. Math.15, 334–360 (1975)

    Google Scholar 

  18. Hartle, J.B., Sorkin, R.: Boundary terms in the action for the Regge calculus. Gen. Rel. Grav.13, 541–549 (1981)

    Google Scholar 

  19. Hasslacher, B., Perry, M.: Spin networks are simplicial quantum gravity. Phys. Lett.103B, 21–24 (1981)

    Google Scholar 

  20. Hawking, S.W.: In: General relativity, an Einstein centenary survey. Hawking, S.W., Israel, W. (eds.). Cambridge: Cambridge University Press 1979

    Google Scholar 

  21. Kneser, H.: Der Simplexinhalt in der nichteuklidischen Geometrie. Deutsch. Math.1, 337–340 (1936)

    Google Scholar 

  22. Lewis, S.M.: Two cosmological solutions of Regge calculus. Phys. Rev. D25, 306–312 (1982)

    Google Scholar 

  23. Lewis, S.M.: Maryland Thesis, Preprint (1982)

  24. McCrory, C.: Stratified general position. In: Lecture Notes in Mathematics, Vol. 664. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  25. McMullen, P.: Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Camb. Philos. Soc.78, 247–261 (1975)

    Google Scholar 

  26. Minkowski, H.: In: Gesammelte Abhandlungen, Vol. II, pp. 131–229. New York: Chelsea Publ. 1967

    Google Scholar 

  27. Misner, C.W., Thorn, K.S., Wheeler, J.A.: Gravitation. San Francisco: Freeman 1973

    Google Scholar 

  28. Munkres, J.R.: Elementary differential topology. Princeton, NJ: Princeton University Press 1966

    Google Scholar 

  29. Ponzano, G., Regge, T.: In: Spectroscopic and group theoretical methods in physics. Bloch, F., Cohen, S.G., De Shalit, A., Sambursky, S., Talmi, I. (eds.). New York: Wiley 1968

    Google Scholar 

  30. Rado, T.: Length and area. New York: American Mathematical Society 1948

    Google Scholar 

  31. Regge, T.: General relativity without coordinates. Nuovo Cimento19, 558–571 (1961)

    Google Scholar 

  32. Roček, M., Williams, R.M.: Quantum Regge calculus. Phys. Lett.104B, 31–37 (1981)

    Google Scholar 

  33. Roček, M., Williams, R.M.: The quantization of Regge calculus. Preprint (1981)

  34. Santalo, L.A.: Integral geometry and geometric probability. London: Addison-Wesley 1976

    Google Scholar 

  35. Schläfli, L.: On the multiple integral\(\mathop \smallint \limits^n\) dxdy...dx, whose limits arep 1=a 1 x+b 1 y+...+h 1 z>0,p 2>0, ...,p n>0 andx 2+y 2+...+z 2<1. Q. J. Pure Appl. Math.2, 269–301 (1858)

    Google Scholar 

  36. Schläfli, L.: Über die Entwickelbarkeit des Quotienten zweier bestimmter Integrale von der Form ∫dxdy ... dz. J. Reine Angew. Math.67, 183–199 (1867)

    Google Scholar 

  37. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D12, 385–396 (1975)

    Google Scholar 

  38. Sorkin, R.: The electromagnetic field on a simplicial net. J. Math. Phys.16, 2432–2440 (1975)

    Google Scholar 

  39. Steiner, J.: Jber preuss. Akad. Wiss. 114–118 (1840). In: Gesammelte Werke, Vol. II, pp. 171–177, New York: Chelsea 1971

    Google Scholar 

  40. Sulanke, R., Wintgen, P.: Differentialgeometrie und Faserbündel. Berlin: Deutscher Verlag der Wissenschaft 1972

    Google Scholar 

  41. Warner, N.P.: The application of Regge calculus to quantum gravity and quantum field theory in a curved background. Proc. R. Soc.383, 359–377 (1982)

    Google Scholar 

  42. Weingarten, D.: Euclidean quantum gravity on a lattice. Nucl. Phys. B210, 229–249 (1982)

    Google Scholar 

  43. Weyl, H.: On the volume of tubes. Am. J. Math.61, 461–472 (1939)

    Google Scholar 

  44. Wheeler, J.A.: In: Relativity, groups, and topology. deWitt, C., deWitt, B. (eds.). New York: Gordon and Breach 1964

    Google Scholar 

  45. Whitney, H.: Geometric integration theory. Princeton, NJ: Princeton University Press 1971

    Google Scholar 

  46. Williams, R.M., Ellis, G.F.R.: Regge calculus and observations. I. Formalism and applications to radial motion and circular orbits. Gen. Rel. Grav.13, 361–395 (1981)

    Google Scholar 

  47. Wintgen, P.: Normal cycle and integral curvature for polyhedra in Riemannian manifolds. Colloquia Mathematica Societatis Janos Bolya, Budapest (1978)

  48. Wong, C.Y.: Application of Regge calculus to the Schwarzschild and Reissner-Nørdstrom geometries at the moment of time symmetry. J. Math. Phys.12, 70–78 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Supported in part by NSF MCS-810-2758-A-02

Supported in part by Deutsche Forschungsgemeinschaft and NSF PHY-81-09110-A-01

On leave of absence from Freie Universität Berlin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheeger, J., Müller, W. & Schrader, R. On the curvature of piecewise flat spaces. Commun.Math. Phys. 92, 405–454 (1984). https://doi.org/10.1007/BF01210729

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210729

Keywords

Navigation