Advertisement

Communications in Mathematical Physics

, Volume 79, Issue 4, pp 581–599 | Cite as

On the existence of solutions to Einstein's equation with non-zero Bondi news

  • Abhay Ashtekar
  • Tevian Dray
Article

Abstract

It is shown that theC-metric (with parameters chosen to lie in suitable intervals) admits a conformal completion such that the space of generators of null infinity, ℐ, is a 2-sphere. This structure of ℐ is both necessary and sufficient for the analysis of gravitational radiation in exact general relativity. Bondi news (as well as the electromagnetic radiation field, in the charget case) is examined and found to be non-zero. Thus the issue of existence of exact solutions to the Einstein (and Einstein-Maxwell) equations admitting radiation (in the sense of Bondi, Sachs, and Penrose) is resolved. In addition, the analysis clarifies the sense in which the vacuumC-metric represents the gravitational field of two accelerating black-holes.

Keywords

Radiation Neural Network Statistical Physic Exact Solution General Relativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Penrose, R.: Phys. Rev. Lett.10, 66 (1963); Proc. R. Soc. (London) A284, 159 (1965)Google Scholar
  2. 2.
    Geroch, R.: In: Asymptotic structure of space-time. Esposito, P., Witten, L. (eds.). New York: Plenum 1977Google Scholar
  3. 3.
    Lerner, D., Porter, J.R.: J. Math. Phys.15, 1416 (1974)Google Scholar
  4. 4.
    Geroch, R., Xanthopoulos, B.C.: J. Math. Phys.19, 714 (1978)Google Scholar
  5. 5.
    Friedrich, H.: In: Proceedings of the third gregynog workshop on gravitational radiation theory. Walker, M. (ed.). Max-Planck-Institute Green Report No. 204 (1979)Google Scholar
  6. 6.
    Levi-Civita, T.: Atti Accad. Nazl. Lincei., Rend.27, 343 (1918)Google Scholar
  7. 7.
    Newman, E.T., Tamburino, L.: J. Math. Phys.2, 667 (1961); Robinson, I., Trautman, A.: Proc. R. Soc. (London) A265, 463 (1962); Ehlers, J., Kundt, W.: In: Gravitation, an introduction to current research, Witten, L. (ed.). New York: Wiley 1962Google Scholar
  8. 8.
    Kinnersley, W., Walker, M.: Phys. Rev. D2, 1359 (1970); In: Lecture notes in Physics, Vol. 14, Berlin, Heidelberg, New York: Springer 1972Google Scholar
  9. 9.
    Plebanski, J.F., Demianski, M.: Ann. Phys.98, 98 (1976)Google Scholar
  10. 10.
    Farhoosh, H., Zimmerman, R.L.: J. Math. Phys.20, 2272 (1979)Google Scholar
  11. 11.
    Newman, E.T., Penrose, R.: Proc. R. Soc. (London) A305, 175 (1968)Google Scholar
  12. 12.
    Ernst, F.J.: J. Math. Phys.17, 515 (1976);19, 1986 (1978)Google Scholar
  13. 13.
    Dray, T., Walker, M.: Lett. Math. Phys.4, 15 (1980)Google Scholar
  14. 14.
    Geroch, R., Horowitz, G.T.: Phys. Rev. Lett.40, 203 (1978)Google Scholar
  15. 15.
    Ashtekar, A., Xanthopoulos, B.C.: J. Math. Phys.19, 2216 (1978)Google Scholar
  16. 16.
    Walker, M.: J. Math. Phys.2, 2280 (1970)Google Scholar
  17. 17.
    Schmidt, B.G.: Private communication to A. Ashtekar (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Abhay Ashtekar
    • 1
  • Tevian Dray
    • 1
  1. 1.Département de PhysiqueUniversité de Clermont-Fd.AubièreFrance

Personalised recommendations