Advertisement

Communications in Mathematical Physics

, Volume 79, Issue 4, pp 473–488 | Cite as

Two-dimensional generalized Toda lattice

  • A. V. Mikhailov
  • M. A. Olshanetsky
  • A. M. Perelomov
Article

Abstract

The zero curvature representation is obtained for the two-dimensional generalized Toda lattices connected with semisimple Lie algebras. The reduction group and conservation laws are found and the mass spectrum is calculated.

Keywords

Neural Network Statistical Physic Mass Spectrum Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhailov, A.V.: Pisma v ZhETF30, 443 (1979)Google Scholar
  2. 2.
    Bogoyavlensky, O.I.: Commun. Math. Phys.51, 201 (1976)Google Scholar
  3. 3.
    Bourbaki, N.: Groups et algebres de Lie, Chaps. IV–VI. Paris: Herman 1968Google Scholar
  4. 4.
    Dodd, R.K., Bullough, R.K.: Proc. Roy. Soc. Lond. A352, 481 (1977)Google Scholar
  5. 5.
    Zhiber, A.V., Shabat, A.B.: Dokl. Akad. Nauk USSR247, No. 5 (1979)Google Scholar
  6. 6.
    Leznov, A.N., Saveliev, M.V.: Lett. Math. Phys.3, 489 (1979)Google Scholar
  7. 7.
    Zakharov, V.E., Shabat, A.B.: Funct. Anal. Appl.13, 13 (1979)Google Scholar
  8. 8.
    Helgason, S.: Differential geometry and symmetric spaces. London, New York: Academic Press 1962Google Scholar
  9. 9.
    Flaschka, H.: Lecture Notes in Physics, Vol. 38, p. 441. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  10. 10.
    Manakov, S.V.: JETP65, 505 (1973)Google Scholar
  11. 11.
    Shabat, A.B., Sokolov, V.: Funct. Anal. Appl.14, No. 2 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. V. Mikhailov
    • 1
  • M. A. Olshanetsky
    • 2
  • A. M. Perelomov
    • 2
  1. 1.Landau Institute of Theoretical Physics USSRUSSR
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowUSSR

Personalised recommendations