Skip to main content
Log in

The inverse scattering transformation in the angular momentum plane

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The inverse scattering transformation (IST) with the angular momentum (λ) as a spectral variable turned out to be a useful method to deal with rotationally invariant problems in field theory at higher spatial dimensions [Refs. (1) and (2)]. We derive the direct and inverse scattering problems for thev-dimensional radial Schrödinger equation for variable λ and fixed energy (negative or positive). We determine the scattering data (SD) in one to one correspondence with the potential and derive the corresponding Gelfand-Levitan equation. A family of exactly solvable potentials for any λ and fixed energy is obtained. The trace identities associated to this IST are derived for both signs of the energy. They relate integrals of local polynomials in the potential and its derivatives timesr 2n−1(n≧1) with the SD. The presence of this power ofr makes these relations useful in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Vega, H. J.: Phys. Lett. B.98B, 280 (1981)

    Google Scholar 

  2. de Vega, H. J.: LPTHE preprint (in preparation)

  3. Regge, T.: Nuovo Cimento14, 951 (1959)

    Google Scholar 

  4. Burdet, G., Giffon, M., Predazzi, E.: Nuovo Cimento36, 1337 (1965)

    Google Scholar 

  5. Loeffeld, J. J.: Ann. Inst. Henri Poincaré8, 339 (1968)

    Google Scholar 

  6. Chadan, K., Sabatier, P. C.: Inverse Problems in Quantum Scattering Theory. Berlin, Heidelberg, New York: Springer 1977 (Specially chapters XI and XIII and references contained therein)

    Google Scholar 

  7. Naimark, M. A.: Linear Differential Operators, Part II. New York: Frederick Ingar 1968

    Google Scholar 

  8. Lebedev, N. N.: Special functions and their applications. London: Prentice Hall 1965

    Google Scholar 

  9. Erdélyi et al.: Tables of Integral Transforms, Vol. 2. New York: 1954 McGraw Hill

    Google Scholar 

  10. Newton, R. G.: Scattering Theory. New York: McGraw Hill 1966

    Google Scholar 

  11. Faddeev, L. D.: J. Math. Phys.4, 72 (1963)

    Google Scholar 

  12. See for example Buslaev, V. S., Faddeev, L. D.: Dokl. Akad. Nauk SSSR132, 13 (1960); Sov. Math. Dokl.1, 451 (1960)

    Google Scholar 

  13. Zakharov, V. E., Faddeev, L. D.: Funkt. Anal. iego Prilozh.5, 18 (1971) (Funct, Anal. Appl,5, 280 (1971))

    Google Scholar 

  14. Takhtadzhyan, L. A., Faddeev, L. D.: Teor. Mat. Fiz.21, 160 (1974) (Theor. Math. Phys. (USSR)21, 1046 (1975))

    Google Scholar 

  15. See also Faddeev, L. D.: In: Solitons, Topics in Current Physics. Bullough, R. M., Caudrey, P. J. (eds.) Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  16. Ablowitz, M. J., Segur, H.: J. Math. Phys.16, 1054 (1975) I am indebted to Prof. Mark Ablowitz for calling my attention on this paper.

    Google Scholar 

  17. Birman, M. S., Krein, M. G.: Dokl. Akad. Nauk. SSSR144, 740 (1962)

    Google Scholar 

  18. Gelfand, I. M. Shilov, G. E.: Generalized Functions. New York: Academic Press 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Brézin

Laboratoire associé au CNRS

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vega, H.J. The inverse scattering transformation in the angular momentum plane. Commun.Math. Phys. 81, 313–325 (1981). https://doi.org/10.1007/BF01209070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209070

Keywords

Navigation