Skip to main content
Log in

Completely integrable models in quasicrystals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The general method of construction of integrable dynamical models in quasicrystals is presented in the paper. It is illustrated on the example of the model of interacting spins for Penrose nonperiodic tiling of the plane. Another example constructed is the three dimensional model of interacting spins for icosahedral tiling of the three dimensional space. The bulk free energy is calculated for these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H.: Games, logic, and computers. Sci. Am.216, 98–107 (1965)

    Google Scholar 

  2. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math.12, 177–209 (1971)

    Google Scholar 

  3. Penrose, R.: The role of aestetics in pure and applied mathematical research. Bull. Inst. Math. Appl.10, 266–271 (1974)

    Google Scholar 

  4. Penrose, R.: Pentaplexity. Math. Intell.2, 32–37 (1979)

    Google Scholar 

  5. Gardner, M.: Mathematical games. Sci. Am.236, 110–121 (1977)

    Google Scholar 

  6. de Bruijn, N.G.: Algebraic theory of Penrose's nonperiodic tilings of the plane. Proc. K. Ned. Akad. Wet. Ser. A43, 39–66 (1981)

    Google Scholar 

  7. Mackay, A.L.: De nive quinquangula. Kristallografiya [Sov. Phys. Crystallogr.]26, 910 (1981)

    Google Scholar 

  8. Kramer, P., Neri, R.: On periodic and non-periodic space fillings of\(\mathbb{E}^m \) obtained by projection. Acta Crystallogr. Sec. A40, 580–587 (1984)

    Article  Google Scholar 

  9. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett.53, 1951–1953 (1984)

    Article  Google Scholar 

  10. Levine, D., Steinhardt, P.J.: Quasicrystals: a new class of ordered structures. Phys. Rev. Lett.53, 2477–2480 (1984)

    Article  Google Scholar 

  11. Kalugin, P.A., Kitayev, A.Yu., Levitov, L.S.: 6-dimensional properties ofAℓ ℳn alloy. J. Phys. Lett.46, L-601–607 (1985)

    Google Scholar 

  12. Kalugin, P.A., Kitayev, A.Yu., Levitov, L.S.:Aℓ ℳn-six dimensional crystal. Pisma v ZETF (Sov.)41, 119–121 (1986)

    Google Scholar 

  13. Socolar, J.E.S., Steinhardt, P.J., Levine, D.: Quasicrystals with arbitrary orientational symmetry. Phys. Rev. B28, 5547–5550 (1985)

    Google Scholar 

  14. Elser, V., Henley, L.: Crystal and quasicrystal structures inAℓ-ℳn-alloys. Phys. Rev. Lett.55, 2883–2886 (1985)

    Google Scholar 

  15. Katz, A., Duneau, M.: Quasiperiodic patterns and icosahedral symmetry. J. Phys.47, 181–196 (1986)

    Google Scholar 

  16. Gälhler, F., Rhyner, J.: Equivalence of generalised grid and projection method for the construction of quasiperiodic tilings. J. Phys. A (Math. Gen.)19, 267–277 (1986)

    Google Scholar 

  17. Elser, V.: The diffraction pattern of projected structures. Acta Crystallographica42 A, 36–43 (1986)

    Google Scholar 

  18. Rivier, N., Sadoc, J.F.: Hierarchy and disorder in noncrystalline structures. Preprint. London: Imperial College 1986

    Google Scholar 

  19. Levine, D., Steinhardt, P.J.: Quasicrystals, I. Phys. Rev. B34, 596–616 (1986);

    Google Scholar 

  20. Socolar, J.E.S., Steinhardt, P.J.: Quasicrystals, II. Phys. Rev. B34, 617–647 (1986)

    Google Scholar 

  21. Bak, P.: Symmetry, Stability, and elastic properties of icosahedral incommensurate crystals. Phys. Rev. B32, 5764 (1985)

    Google Scholar 

  22. Korepin, V.E.: Quasiperiodic tilings and quasicrystals. Zap. Nauch. Semin. LOMI (Sov.)155, 116–135 (1986)

    Google Scholar 

  23. Kohmoto, M., Kadanoff, L.P., Tang, C.: Phys. Rev. Lett.50, 1870 (1983)

    Google Scholar 

  24. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H.J., Siggia, E.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett.50, 1873 (1983)

    Google Scholar 

  25. Kalugin, P.A., Kitayev, A.Yu., Levitov, L.S.: Electronic spectrum of one-dimensional quasicrystal. Preprint. Moscow: L.D. Landau Institut 1986

    Google Scholar 

  26. Sutherland, B.: A self-similar ground state wave function for electrons on a two-dimensional Penrose lattice. Preprint. Salt Lake City: University of Utah 1986

    Google Scholar 

  27. Luck, J.M., Nieuwenhuzen, T.M.: A soluble quasi-crystalline magnetic model: TheXY quantum spin chain. Europhys. Lett.2, 257–266 (1986)

    Google Scholar 

  28. Korepin, V.E.: Eight-vertex model of the quasicrystal. Phys. Lett. A118, 285–286 (1986)

    Google Scholar 

  29. Baxter, R.J.: Exactly solved models in statistical mechanics. New York, London: Academic Press 1982

    Google Scholar 

  30. Faddeev, L.D.: Quantum completely integrable models of field theory. Sov. Sci. Rev. Math. Phys. C1, 107–160 (1981)

    Google Scholar 

  31. Izergin, A.G., Korepin, V.E.: Quantum inverse scattering method. Fizika ehlementarnyhh chastits I atomnogo yadra (Sov. J. Elem. Part. Nucl.)13, 207–223 (1982)

    Google Scholar 

  32. Lecture Notes in Physics, No. 242. Shastry, B.S., Jha, S.S., Singh, V. (Hrsg.). Berlin, Heidelberg, New York: Springer 1985

  33. Takhtajan, L.A., Faddeev, L.D.: Quantum inverse scattering method andXYZ Heisenberg model. Usp. Mat. Nauk. (Sov.)34, 13–63 (1979)

    Google Scholar 

  34. Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Phil. Trans. R. Soc. Lond.289, 315–346 (1978)

    Google Scholar 

  35. Izergin, A.G., Korepin, V.E.: Critical exponents in the HeisenbergXXZ magnet. Pisma Zh. Eksp. Teor. Fiz.42, 414–416 (1985) (translated in English by Am. Math. Soc., pp. 512–514)

    Google Scholar 

  36. Zamolodchikov, A.B.: Tetrahedron equations and the relativisticS-matrix of straight-strings in 2 + 1-dimensions. Commun. Math. Phys.79, 489–505 (1981)

    Google Scholar 

  37. Zamolodchikov, A.B.: Tetrahedron equations and integrable systems in three dimensional space. Zh. Eksp. Teor. Fiz. (Sov.)79, 641–664 (1980)

    Google Scholar 

  38. Jaekel, M.T., Maillard, J.M.: Symmetry relations in exactly soluble models. J. Phys. A15, 1309–1325 (1982)

    Google Scholar 

  39. Baxter, R.J.: Partition function of the three-dimensional Zamolodchikov model. Phys. Rev. Lett.53, 1795–1798 (1984)

    Google Scholar 

  40. Baxter, R.J.: The Yang-Baxter equations and the Zamolodchikov model. Physica D18, 321 (1986)

    Google Scholar 

  41. Baxter, R.J.: On Zamolodchikov's solution of the tetrahedron equations. Commun. Math. Phys.88, 185–205 (1983)

    Google Scholar 

  42. Bazhanov, V.V., Stroganov, Yu.G.: Hidden symmetry of the free fermion model. Teor. Mat. Fiz. (Sov.)63, 417 (1985)

    Google Scholar 

  43. Stroganov, Yu.G.: A new calculation method for partition functions in some lattice models. Phys. Lett.74 A, 116–119 (1979)

    Google Scholar 

  44. Zamolodchikov, A.B.: FactorizedS matrices and lattice statistical systems. Sov. Sci. Rev.2, 1–29 (1980)

    Google Scholar 

  45. Jaekel, M.T., Maillard, J.M.: Inverse functional relation on the Potts model. J. Phys. A15, 2241–2257 (1982)

    Google Scholar 

  46. Baxter, R.J., Forrester, P.J.: Is the Zamolodchikov model critical? J. Phys. A18, 1483–1497 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korepin, V.E. Completely integrable models in quasicrystals. Commun.Math. Phys. 110, 157–171 (1987). https://doi.org/10.1007/BF01209021

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209021

Keywords

Navigation