Skip to main content
Log in

Pure point spectrum for discrete almost periodic Schrödinger operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The finite difference Schrödinger operator on ℤm is considered

$$Hu_j = \left( {\sum\limits_{v = 1}^m { D_v^2 } } \right)u_j + \frac{1}{\varepsilon }q_j u_j ,u \in \ell ^2 (\mathbb{Z}^m ),$$

where\(\sum\limits_{v = 1}^m { D_v^2 } \) is the difference Laplacian inm dimensions. For ɛ sufficiently small almost periodic potentialsq j are constructed such that the operatorH has only pure point spectrum. The method is an inverse spectral procedure, which is a modification of the Kolmogorov-Arnol'd-Moser technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J., Simon, B.: Almost periodic Schrödinger operators. I. Commun. Math. Phys.82, 101–120 (1981)

    Google Scholar 

  2. Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. AMS6, 81–85 (1982)

    Google Scholar 

  3. Bellissard, J., Lima, R., Scoppola, E.: Localization inv-dimensional incommensurate structures. CNRS Luminy. Commun. Math. Phys. (submitted) (preprint)

  4. Bellissard, J., Lima, R., Testard, D.: A metal-insulator transition for the almost Mathieu model. Commun. Math. Phys. (to appear)

  5. Bellissard, J.: Almost Random operators,K-theory, and spectral properties. CNRS Luminy (preprint)

  6. Bellissard, J., Scoppola, E.: The density of states of almost periodic Schrödinger operators and the frequency module; a counterexample. Commun. Math. Phys.85, 301–308 (1982)

    Google Scholar 

  7. Besicovitch, A.S.: Almost periodic functions. Cambridge: Cambridge University Press 1932

    Google Scholar 

  8. Craig, W., Simon, B.: Subharmonicity of the Lyapounov index. Caltech preprint. Duke Math. J. (submitted)

  9. Dinaberg, E., Sinai, Ya.: The one-dimensional Schrödinger equation with a quasiperiodic potential. Funct. Anal. Appl.9, 279–289 (1975)

    Google Scholar 

  10. Fishman, S., Grempel, D., Prange, R.: Localization in an incommensurate potential: an exactly solvable model. University of Maryland (preprint)

  11. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys.84, 403–438 (1982)

    Google Scholar 

  12. Moser, J.: An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum. Comm. Math. Helv.56, 198–224 (1981)

    Google Scholar 

  13. Moser, J.: Convergent series expansions for quasiperiodic motion. Math. Ann.169, 136–176 (1967)

    Google Scholar 

  14. Pöschel, J.: Examples of discrete Schrödinger operators with pure point spectrum. ETH preprint. Commun. Math. Phys. (submitted)

  15. Rüssmann, H.: On the one-dimensional Schrödinger equation with quasiperiodic potential. Ann. NY Acad. Sci.357, 90–107 (1980)

    Google Scholar 

  16. Sarnak, P.: Spectral behavior of quasiperiodic potentials. Commun. Math. Phys.84, 377–402 (1982)

    Google Scholar 

  17. Simon, B.: Almost periodic Schrödinger operators; a review. Caltech preprint

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, W. Pure point spectrum for discrete almost periodic Schrödinger operators. Commun.Math. Phys. 88, 113–131 (1983). https://doi.org/10.1007/BF01206883

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206883

Keywords

Navigation