Advertisement

Communications in Mathematical Physics

, Volume 86, Issue 1, pp 87–110 | Cite as

Borel summability of the 1/N expansion for theN-vector [O(N) non-linear σ] models

  • J. Fröhlich
  • A. Mardin
  • V. Rivasseau
Article

Abstract

We construct an analytic interpolation in 1/N for theN-vector [O(N) non-linear σ] models withN-component fields on a lattice. This interpolation, valid at sufficiently high temperatures, extends over a large domain in the complex plane containing the half plane Re(1/N)>0. We use this result to show that the 1/N expansion of the free energy density and of the correlation functions is Borel summable in the thermodynamic limit and at high temperature.

Keywords

Neural Network Free Energy Statistical Physic Energy Density Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kupiainen, A.: Commun. Math. Phys.73, 273 (1980)Google Scholar
  2. 2.
    Kupiainen, A.: Commun. Math. Phys.74, 199 (1980)Google Scholar
  3. 3.
    Aref'eva, I. Y., Nissimov, E. R., and Pacheva, S. J.: Commun. Math. Phys.71, 213 (1980)Google Scholar
  4. 4.
    Billionnet, C., Renouard, P.: Analytic interpolation and Borel summability of the λ/NN|24 models. Commun. Math. Phys.84, 251–295 (1982)Google Scholar
  5. 5.
    Symanzik, K.: Euclidean quantum field theory. In Local Quantum Theory Jost. (ed.) New York, London: Academic Press 1969Google Scholar
  6. 6.
    Brydges, D., Fröhlich, J., Spencer, T.: The Random walk representation of classical spin systems and correlations inequalities. Commun. Math. Phys.83, 125–152 (1982)Google Scholar
  7. 7.
    Brydges, D., Federbush, P.: Commun. Math. Phys.62, 79 (1978)Google Scholar
  8. 8.
    Fröhlich, J.: On the triviality of λφd4 theories and the approach to the critical point in\(d\mathop > \limits_{\left( = \right)} 4\) dimensions. Preprint IHES (1981)Google Scholar
  9. 9.
    Picco, P.: (in preparation)Google Scholar
  10. 10.
    Seiler, E.: Expansion methods, Lausanne Course, (1981)Google Scholar
  11. 11.
    Gallavotti, G., Martin-Lof, A., Miracle-Sole, S.: Statistical mechanics, Proceedings of the Battelle Rencontre, 1970, In: Lecture Notes in Physics, Vol. 6 Berlin, Heidelberg, New York: Springer 1971Google Scholar
  12. 12.
    Malyshev, S.: Commun. Math. Phys.64, 131 (1979)Google Scholar
  13. 13.
    Sokal, A.: J. Math. Phys.21, 261 (1980)Google Scholar
  14. 14.
    Wittaker, E. T., Watson, G.: A course of modern analysis. Cambridge: Cambridge University Press 1963Google Scholar
  15. 15.
    Hardy, G. H.: Divergent series. Oxford: Oxford Press 1949Google Scholar
  16. 16.
    de Calan, C., Rivasseau, V.: Commun. Math. Phys.82, 69 (1981)Google Scholar
  17. 17.
    Lüscher, M.: Berie preprint 1981, Nucl. Phys. B. (to appear)Google Scholar
  18. 18.
    Affleck, I. K., Levine, H.: Strong coupling versus largeN in σ-models. Nucl. Phys.B195, 493–502 (1982)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. Fröhlich
    • 1
  • A. Mardin
    • 2
  • V. Rivasseau
    • 3
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  2. 2.C.P.T., Ecole PolytechniquePalaiseau CédexFrance
  3. 3.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations