Advertisement

Communications in Mathematical Physics

, Volume 90, Issue 2, pp 273–292 | Cite as

Universal properties of maps of the circle with ɛ-singularities

  • Leo Jonker
  • David A. Rand
Article

Abstract

Following the work of Collet, Eckmann, and Lanford on the Feigenbaum conjecture, we study the structure of the renormalization transformation introduced in [12] upon maps of the circle with critical points of the formx|x|ɛ.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I.: Small denominators I; on the mapping of the circumference onto itself. Izv. Akad. Nauk.25, 21–86 (1961) [Transl. Am. Math. Soc., 2nd Ser.46, 213–284 (1965)]Google Scholar
  2. 2.
    Brunovsky, P.: Generic properties of the rotation number of one-parameter diffeomorphisms of the circle. Czech. Math. J.24, 74–90 (1974)Google Scholar
  3. 3.
    Collet, P., Eckmann, J.-P., Lanford III, O.E.: Universal properties of maps on an interval. Commun. Math. Phys.76, 211–254 (1980)Google Scholar
  4. 4.
    Feigenbaum, M.J., Kadanoff, L.P., Shenker, S.J.: Quasiperiodicity in dissipative systems: a renormalization group analysis. Physica D (1982) (submitted)Google Scholar
  5. 5.
    Herman, M.R.: Mesure de Lebesque et nombre de rotation, geometry and topology. In: Lecture Notes in Mathematics, Vol. 597. Berlin, Heidelberg, New York: Springer 1977, pp. 271–293Google Scholar
  6. 6.
    Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. I.H.E.S. Publ. Math.49, 5–234 (1979)Google Scholar
  7. 7.
    Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. In: Lecture Notes in Mathematics, Vol. 583. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  8. 8.
    Kadanoff, L.P.: An ɛ-expansion for a one-dimensional map. Preprint (1982)Google Scholar
  9. 9.
    Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  10. 10.
    Lanford III, O.E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc.6, 427–434 (1982)Google Scholar
  11. 11.
    Lang, S.: Differential manifolds. Reading, MA: Addison-Wesley 1972Google Scholar
  12. 12.
    Rand, D., Ostlund, S., Sethna, J., Siggia, E.D.: A universal transition from quasi-periodicity to chaos in dissipative systems. Phys. Rev. Lett.49, 132–135 (1982), and Universal Properties of bifurcations from quasiperiodicity in dissipative systems. ITP Preprint 1982Google Scholar
  13. 13.
    Shenker, S.J.: Scaling behaviour in a map of a circle onto itself: empirical results. Physica D (1982) (to be published)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Leo Jonker
    • 1
  • David A. Rand
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations