Advertisement

Communications in Mathematical Physics

, Volume 90, Issue 2, pp 175–186 | Cite as

Hedgehogs in a three-dimensional anisotropic spin system

  • Thordur Jonsson
Article
  • 54 Downloads

Abstract

We study a continuum version of a classical anisotropic spin model in three dimensions with three component spins. We prove the existence of topological defects, called hedgehogs, which are analogous to the vortices in the two-dimensionalxy-model and have a logarithmically divergent action. Bounds for the interaction energy of a hedgehog and an antihedgehog are derived.

Keywords

Vortex Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hornreich, R. M., Luban, M., Shtrikman, S.: Critical behavior at the onset ofk-space instability on the λ line. Phys. Rev. Lett.35, 1678–1681 (1975)Google Scholar
  2. 2.
    Hornreich, R. M.: Renormalization-group analysis of critical modes at the ferromagnetic Lifshitz point in crystalline systems. Phys. Rev.B19, 5914–5920 (1979)Google Scholar
  3. 3.
    Grinstein, G.: Anisotropic Sine-Gordon model and infinite-order phase transitions in three dimensions. Phys. Rev.B23, 4615–4630 (1981); Spin-wave theory for the biaxial (m = 2) Litshitz point problem in three dimensions. J. Phys.A13, L201–L205 (1980)Google Scholar
  4. 4.
    Grinstein, G., Pelcovits, R. A.: Anharmonic effects in bulk smectic liquid crystals and other “one-dimensional” solids. Phys. Rev. Lett.47, 856–859 (1981)Google Scholar
  5. 5.
    Nelson, D. R., Toner, J.: Bond-orientational order, dislocation loops, and melting of solids and smectic-A liquid crystals. Phys. Rev.B24, 363–387 (1981)Google Scholar
  6. 6.
    Toner, J.: Renormalization group treatment of the dislocation loop model of the smectic A-nematic transition Phys. Rev.B26, 462–465 (1982)Google Scholar
  7. 7.
    Polyakov, A. M.: Particle spectrum in quantum field theory. Sov. Phys. JETP Lett.20, 194–195 (1974); Isomeric states of quantum fields. Sov. Phys. JETP41, 988–995 (1976)Google Scholar
  8. 8.
    Kosterlitz, J. M., Thouless, D. J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys.C6, 1181–1203 (1973)Google Scholar
  9. 9.
    Kosterlitz, J. M.: The critical properties of the two-dimensionalxy model. J. Phys.C7, 1046–1060 (1974)Google Scholar
  10. 10.
    Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Commun. Math. Phys.81, 527–602 (1981)Google Scholar
  11. 11.
    Jonsson, T., McBryan, O., Zirilli, F., Hubbard, J.: An existence theorem for multimeron solutions to classical Yang-Mills field equations. Commun. Math. Phys.68, 259–273 (1979)Google Scholar
  12. 12.
    Jaffe, A., Taubes, C.: Vortices and monopoles, Boston, Basel, Stuttgart: Birkhäuser 1980Google Scholar
  13. 13.
    Grest, G. S., Sak, J.: Low-temperature renormalization group for the Lifshitz point. Phys. Rev.B17, 3607–3610 (1978)Google Scholar
  14. 14.
    Adams, R.: Sobolev spaces. New York, San Francisco, London: Academic Press 1975Google Scholar
  15. 15.
    Vainberg, M.: Variational method and the method of monotone operators in the theory of nonlinear equations. New York: Wiley 1973Google Scholar
  16. 16.
    Felsager, B.: Geometry, particles and fields. Odense: Odense University Press 1981Google Scholar
  17. 17.
    De Alfaro, V., Fubini, S., Furlan, G.: A new classical solution of the Yang-Mills field equations. Phys. Lett.65B, 163–167 (1976)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Thordur Jonsson
    • 1
  1. 1.NorditaCopenhagen øDenmark

Personalised recommendations