Advertisement

Communications in Mathematical Physics

, Volume 107, Issue 4, pp 553–560 | Cite as

The simplex structure of the classical states of the quantum harmonic oscillator

  • A. Bach
  • U. Lüxmann-Ellinghaus
Article

Abstract

It is shown that the convex set of classical states of the quantum harmonic oscillator is a simplex generated as the closed convex hull of the coherent states in the weak topology of the Banach space of trace class operators.

Keywords

Neural Network Statistical Physic Banach Space Complex System Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glauber, R. J.: Photon statistics. In: Cohen, E. G. D. (ed.) Fundamental problems in statistical mechanics. Amsterdam: North-Holland 1968, pp. 140–187Google Scholar
  2. 2.
    Klauder, J. R., Sudarshan, E. C. G.: Fundamentals of quantum optics. New York: Benjamin 1968Google Scholar
  3. 3.
    Davis, E. B.: Quantum theory of open systems. London: Academic Press 1976Google Scholar
  4. 4.
    Diestel, J., Uhl, J. J. Jr.,: Vector measures. Providence, RI: AMS 1977Google Scholar
  5. 5.
    Bauer, H.: Wahrscheinlichkeitstheorie, 2nd (ed.) Berlin: De Gruyter 1974Google Scholar
  6. 6.
    Edgar, G. A.: A noncompact Choquet theorem. Proc. Am. Math. Soc.49, 354–358 (1975)Google Scholar
  7. 7.
    Bourgin, R. D., Edgar, G. A.: Noncompact simplexes in banach spaces with the Radon-Nikodym property. J. Funct. Anal.23, 162–176 (1976)Google Scholar
  8. 8.
    Beltrametti, E. G., Cassinelli, G.: The logic of quantum mechanics. Reading M. A.: Addison-Wesley 1981Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Bach
    • 1
  • U. Lüxmann-Ellinghaus
    • 2
  1. 1.Institut für Theoretische Physik IUniversität MünsterMünsterFederal Republic of Germany
  2. 2.Fachbereich MathematikUniversität DortmundDortmund 50Federal Republic of Germany

Personalised recommendations