Advertisement

Communications in Mathematical Physics

, Volume 107, Issue 4, pp 535–542 | Cite as

Details of the non-unitarity proof for highest weight representations of the Virasoro algebra

  • Daniel Friedan
  • Zongan Qiu
  • Stephen Shenker
Article

Abstract

We give an exposition of the details of the proof that all highest weight representations of the Virasoro algebra forc<1 which are not in the discrete series are non-unitary.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics High Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedan, D., Qiu, Z., Shenker, S.: In: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.), Berlin, Heidelberg, New York: Springer 1984, p. 419; Conformal invariance, unitarity and critical exponents in two dimensions. Phys. Rev. Lett.52, 1575 (1984)Google Scholar
  2. 2.
    Friedan, D., Qiu, Z., Shenker, S.: Superconformal invariance in two dimensions and the tricritical Ising model. Phys. Lett.151B, 37 (1985)Google Scholar
  3. 3.
    Goddard, P., Olive, D.: Kac-Moody algebras, conformal symmetry and critical exponents. Nucl. Phys. B257, 83 (1985); Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett.152B, 88 (1985); Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys.103, 105 (1986)Google Scholar
  4. 4.
    Boucher, W., Friedan, D., Kent, A.: Determinant formulae and unitarity for theN=2 superconformal algebras in two dimensions or exact results in string compactification. Phys. Lett.172B, 316 (1986)Google Scholar
  5. 5.
    Boucher, W., Friedan, D., Kent, A., Shenker, S.: In preparationGoogle Scholar
  6. 6.
    Di Vecchia, P., Petersen, J.L., Yu, M., Zheng, H.B.: Explicit construction of unitary representations of theN=2 superconformal algebra. Phys. Lett.174B, 280 (1986)Google Scholar
  7. 7.
    Kac, V.: Lecture Notes in Physics, Vol. 94, p. 441. Berlin, Heidelberg, New York: Springer 1979; in Proc. Int. Congress of Math., Helsinki (1978)Google Scholar
  8. 8.
    Feigin, B.L., Fuchs, D.B.: Funct. Anal. Appl.16, 114 (1982)Google Scholar
  9. 9.
    Kac, V.: Lecture Notes in Mathematics, Vol. 933, p. 117. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  10. 10.
    Langlands, R.P.: On unitary representations of the Virasoro algebra. In: Proceedings of the Montreal Workshop on infinite dimensional Lie algebras and their applications. Kass, S. (ed.) (to appear)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Daniel Friedan
    • 1
  • Zongan Qiu
    • 2
  • Stephen Shenker
    • 1
  1. 1.Enrico Fermi and James Franck Institutes, and Department of PhysicsUniversity of ChicagoChicagoUSA
  2. 2.Institute for Advanced StudiesPrincetonUSA

Personalised recommendations