Communications in Mathematical Physics

, Volume 72, Issue 1, pp 37–47 | Cite as

On the Lagrangian theory of anti-self-dual fields in four-dimensional euclidean space

  • K. Pohlmeyer


We show that a certain four-dimensional field theory has powerful structures in common with the two-dimensional 0(1, 3) non-linear σ-model.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aks, S.Ø.: J. Math. Phys.6, 516 (1964)Google Scholar
  2. 2.
    Coleman, S., Mandula, G.: Phys. Rev.159, 1251 (1967)Google Scholar
  3. 3.
    Yang, C.N.: Phys. Rev. Lett.38, 1377 (1977)Google Scholar
  4. 4.
    Belavin, A.A., Zakharov, V.E.: Phys. Lett. B73, 53 (1978)Google Scholar
  5. 5.
    Pohlmeyer, K.: Commun. Math. Phys.46, 207 (1976)Google Scholar
  6. 6.
    Lüscher, M., Pohlmeyer, K.: Nucl. Phys. B137, 46 (1978)Google Scholar
  7. 7.
    Pohlmeyer, K.: On the theory of anti-self-dual SU(2) gauge fields for Euclidean four-dimensional space. Universität Freiburg preprint, 1978Google Scholar
  8. 8.
    Prasad, M.K., Sinha, A., Ling-Lie Wang: Parametric Bäcklund transformation for self-dual SU(N) Yang-Mills fields, and: Non-local continuity equations for self-dual SU(N) Yang-Mills fields, Brookhaven National Laboratory preprints ITP-SB-79-52, BNL-26226 and ITP-SB-79-63, BNL-26356Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. Pohlmeyer
    • 1
  1. 1.Fakultät für PhysikUniversität FreiburgFreiburgGermany

Personalised recommendations