Advertisement

Communications in Mathematical Physics

, Volume 72, Issue 1, pp 15–35 | Cite as

Space-time symmetries in gauge theories

  • P. Forgács
  • N. S. Manton
Article

Abstract

A general definition of symmetries of gauge fields is proposed and a method developed for constructing symmetric fields for an arbitrary gauge group. Scalar fields occur naturally in the formalism and the pure gauge theory reduces to a Higgs model in lower dimensions.

Keywords

Neural Network Statistical Physic Complex System Gauge Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    't Hooft, G.: Nucl. Phys.B79, 276–284 (1974)Google Scholar
  2. 1a.
    Polyakov, A. M.: JETP Lett.20, 194–195 (1974)Google Scholar
  3. 2.
    Belavin, A. A., Polyakov, A. M., Schwartz, A., Tyupkin, Y.: Phys. Lett.59B, 85–87 (1975)Google Scholar
  4. 3.
    Witten, E.: Phys. Rev. Lett.38, 121–124 (1977)Google Scholar
  5. 4.
    Corrigan, E., Olive, D., Fairlie, D. B., Nuyts, J.: Nucl. Phys.B106, 475–492 (1976)Google Scholar
  6. 4a.
    Goddard, P., Olive, D. I.: Rep. Prog. Phys.41, 1357–1437 (1978)Google Scholar
  7. 5.
    Choquet-Bruhat, Y., De Witt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics. Amsterdam: North Holland 1977Google Scholar
  8. 6.
    Bergmann, P. G., Flaherty, E. J.: J. Math. Phys.19, 212–214 (1978)Google Scholar
  9. 7.
    Harnad, J., Shnider, S., Vinet, L.: J. Math. Phys.20, 931–942 (1979)Google Scholar
  10. 8.
    Scherk, J., Schwarz, J.: Nucl. Phys.B81, 118–144 (1974)Google Scholar
  11. 9.
    Cremmer, E., Scherk, J.: Nucl. Phys.B118, 61–75 (1977)Google Scholar
  12. 9a.
    Luciani, J. F.: Nucl. Phys.B135, 111–130 (1978)Google Scholar
  13. 9b.
    Horváth, Z., Palla, L., Cremmer, E., Scherk, J.: Nucl. Phys.B127, 57–65 (1977)Google Scholar
  14. 9c.
    Forgács, P., Horváth, Z.: ITP preprints Budapest no 384 and 385 (1978)Google Scholar
  15. 10.
    Gliozzi, F., Scherk, J., Olive, D.: Nucl. Phys.B122, 253–290 (1977)Google Scholar
  16. 10a.
    Cremmer, E., Julia, B.: Phys. Lett.80B, 48–51 (1978)Google Scholar
  17. 10b.
    Scherk, J., Schwarz, J.: Nucl. Phys.B153, 61–88 (1979)Google Scholar
  18. 11.
    Lohe, M.: Phys. Lett.70B, 325–328 (1977)Google Scholar
  19. 12.
    Olive, D.: Nucl. Phys.B153, 1–12 (1979)Google Scholar
  20. 13.
    Manton, N. S.: Nucl. Phys.B126, 525–541 (1977)Google Scholar
  21. 14.
    Manton, N. S. Nucl. Phys.B158, 141–153 (1979)Google Scholar
  22. 15.
    Weinberg, S.: Phys. Rev.D5, 1962–1967 (1971)Google Scholar
  23. 16.
    Fairlie, D.: Phys. Lett.82B, 97–100 (1979)Google Scholar
  24. 17.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. 1. New York: Interscience 1963Google Scholar
  25. 18.
    Wang, H-C.: Nagoya Math. J.13, 1–19 (1958)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. Forgács
    • 1
  • N. S. Manton
    • 1
  1. 1.Laboratoire de Physique Théorique de l'Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations