Communications in Mathematical Physics

, Volume 65, Issue 3, pp 281–294 | Cite as

Non-Markovian quantum stochastic processes and their entropy

  • Göran Lindblad


A definition of a quantum stochastic process (QSP) in discrete time capable of describing non-Markovian effects is introduced. The formalism is based directly on the physically relevant correlation functions. The notion of complete positivity is used as the main mathematical tool. Two different but equivalent canonical representations of a QSP in terms of completely positive maps are derived. A quantum generalization of the Kolmogorov-Sinai entropy is proved to exist.


Entropy Neural Network Statistical Physic Correlation Function Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, E.B.: Quantum theory of open systems. London: Wiley 1976Google Scholar
  2. 2.
    Davies, E.B.: Commun. math. Phys.39, 91–110 (1974); Math. Ann.219, 147–158 (1976); Ann. Inst. Henri Poincaré11, 265–273 (1975)Google Scholar
  3. 3.
    Ingarden, R.S., Kossakowski, A.: Ann. Phys.89, 451–485 (1975)Google Scholar
  4. 4.
    Lindblad, G.: Commun. math. Phys.48, 119–130 (1976)Google Scholar
  5. 5.
    Lindblad, G.: Letters Math. Phys.1, 219–224 (1976)Google Scholar
  6. 6.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys.17, 821–825 (1976)Google Scholar
  7. 7.
    Nakajima, S.: Progr. Theor. Phys.20, 948–959 (1958)Google Scholar
  8. 8.
    Zwanzig, R.: Lect. Theor. Phys. (Boulder)3, 106–141 (1960); Physica30, 1109–1123 (1964)Google Scholar
  9. 9.
    Haake, F.: Springer Tracts Mod. Phys.66, 98–165 (1973)Google Scholar
  10. 10.
    Davidson, R., Kozak, J.J.: J. Math. Phys.11, 189–202 (1970)Google Scholar
  11. 11.
    Kubo, R.: J. Phys. Soc. Japan26, Suppl. 1–5 (1969)Google Scholar
  12. 12.
    Preston, C.: Random fields. In: Lecture notes in mathematics, Vol. 534. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  13. 13.
    Accardi, L.: Non commutative Mark of chains. Proceedings of the School in Mathematical Physics, Camerino (1974)Google Scholar
  14. 14.
    Accardi, L.: Adv. Math.20, 329–366 (1976)Google Scholar
  15. 15.
    Haken, H., Weidlich, W.: Z. Physik205, 96–102 (1967)Google Scholar
  16. 16.
    Lax, M.: Phys. Rev.172, 350–361 (1968)Google Scholar
  17. 17.
    Haake, F.: Phys. Rev.3A, 1725–1734 (1971)Google Scholar
  18. 18.
    Lugiato, L.A.: Physica85A, 18–27 (1976)Google Scholar
  19. 19.
    Bausch, R., Stahl, A.: Z. Physik204, 32–46 (1967)Google Scholar
  20. 20.
    Evans, D.E., Lewis, J.T.: Comm. Dubl. Inst. Adv. Studies, Ser. A,24 (1977)Google Scholar
  21. 21.
    Evans, D.E., Lewis, J.T.: Commun. math. Phys.50, 219–227 (1976)Google Scholar
  22. 22.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  23. 23.
    Wehrl, A.: Rev. Mod. Phys.50, 221–260 (1978)Google Scholar
  24. 24.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
  25. 25.
    Connes, A., Størmer, E.: Acta Math.134, 289–306 (1975)Google Scholar
  26. 26.
    Emch, G.G.: Commun. math. Phys.49, 191–216 (1976)Google Scholar
  27. 27.
    Robinson, D.W., Ruelle, D.: Commun. math. Phys.5, 288–300 (1967)Google Scholar
  28. 28.
    Stinespring, W.F.: Proc. Am. Math. Soc.6, 211–216 (1955)Google Scholar
  29. 29.
    Kraus, K.: Ann. Phys.64, 311–335 (1970)Google Scholar
  30. 30.
    Arveson, W.: Acta Math.123, 141–224 (1969)Google Scholar
  31. 31.
    Dixmier, J.: Les algebres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  32. 32.
    Lance, C.: J. Funct. Anal.12, 157–176 (1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Göran Lindblad
    • 1
  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholm 70Sweden

Personalised recommendations