Advertisement

Communications in Mathematical Physics

, Volume 65, Issue 3, pp 231–246 | Cite as

Long range atomic potentials in Thomas-Fermi theory

  • Haim Brezis
  • Elliott H. Lieb
Article

Abstract

We prove that the interaction among neutral atoms in Thomas-Fermi theory behaves, for large separationl, likeΓl−7. The constant Γ is independent of the atomic nuclear charges, but does depend on the relative positions of the nuclei. We also show that Π is not a simple sum of pair terms, i.e. in TF theory three and higher body terms persist into the asymptotic (inl) region.

Keywords

Neural Network Statistical Physic Complex System Relative Position Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977). See also Brezis, H., Benilan, Ph.: Non-linear problems related to the Thomas-Fermi equation (in preparation); Lieb, E. H., Simon, B.: Thomas-Fermi theory revisited. Phys. Rev. Lett.31, 681–683 (1973); Lieb, E. H.: Thomas-Fermi and Hartree-Fock theory. Proc. Int. Congr. of Math., Vancouver (1974); Lieb, E. H.: The stability of matter. Rev. Mod. Phys.48, 553–569 (1976)Google Scholar
  2. 2.
    Benguria, R., Lieb, E. H.: Many-body atomic potentials in Thomas-Fermi theory. Ann. Phys. NY110, 34–45 (1978)Google Scholar
  3. 3.
    Benguria, R., Lieb, E.H.: The positivity of the pressure in Thomas-Fermi theory. Commun. math. Phys.63, 193–218 (1978)Google Scholar
  4. 4.
    Lee, C. E., Longmire, C. L., Rosenbluth, M. N.: Thomas-Fermi calculation of potential between atoms. Los Alamos Scientific Laboratory report (LA-5694-MS) (1974)Google Scholar
  5. 5.
    Sommerfeld, A.: Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Physik78, 283–308 (1932)Google Scholar
  6. 6.
    Teller, E.: On the stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys.34, 627–631 (1962)Google Scholar
  7. 7.
    Trudinger, N.: Linear elliptic operators with measurable cofficients. Ann. Sc. Norm. Sup. Pisa, Ser. 3,27, 265–308 (1973)Google Scholar
  8. 8.
    Nirenberg, L.: Non-linear differential equations invariant under certain geometric transformations. Istit. Naz. di Alta Mat. (Bologna), Symp. Math.18, 399–405 (1976)Google Scholar
  9. 9.
    Casimir, H. B. C., Polder, D.: The influence of retardation on the London-van der Waals forces. Phys. Rev.73, 360–372 (1948)Google Scholar
  10. 10.
    Roberts, R. E.: Upper- and lower-bound energy calculations for atoms and molecules in the Thomas-Fermi theory. Phys. Rev.170, 8–11 (1968)Google Scholar
  11. 11.
    Firsov, O. B.: Interaction energy of atoms for small nuclear separations. Zh. Eksp. Teor. Fiz.32, 1464 (1957). English translation: Soviet Phys. JETP5, 1192–1196 (1957)Google Scholar
  12. 12.
    Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math.13, 135–148 (1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Haim Brezis
    • 1
  • Elliott H. Lieb
    • 2
  1. 1.Department de MathématiquesUniversité Paris VIParis Cedex 05France
  2. 2.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations