Advertisement

manuscripta mathematica

, Volume 22, Issue 1, pp 33–45 | Cite as

Irreducible projective representations of finite groups

  • Jürgen Tappe
Article

Abstract

The purpose of this paper is to prove a result on the number of irreducible projective representations of a finite group with respect to a given factor set and a group of linear characters acting on them. It includes a determination of the number of classes of projectively equivalent representations as well as a result of M. Osima on the classes of linearly equivalent representations. Osima proved his result by defining and calculating on irreducible projective Brauer characters, whereas the method used here is based on Brauer's well-known result for the linear modular representations and an induction argument on suitable coverings.

Keywords

Number Theory Finite Group Algebraic Geometry Topological Group Equivalent Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. ALPERIN and T.N. KUO: The exponent and the projective representations of a finite group. Illinois J. Math. 11, 410–413 (1967).Google Scholar
  2. 2.
    C.W. CURTIS and I. REINER: Representation theory of finite groups and associative algebras. New York: Interscience Publishers 1962.Google Scholar
  3. 3.
    W. FEIT: Characters of finite groups. New York: W.A. Benjamin, Inc. 1967.Google Scholar
  4. 4.
    R. FRUCHT: Über die Darstellung endlicher abelscher Gruppen durch Kollineationen. J. reine angew. Math. 166, 16–29 (1931).Google Scholar
  5. 5.
    R. MANGOLD: Beiträge zur Theorie der Darstellungen endlicher Gruppen durch Kollineationen. Mitt. Math. Sem. Gießen, Heft 69 (1966).Google Scholar
  6. 6.
    A.O. MORRIS: Projective representations of finite groups. Proceedings of the conference on Clifford algebras, Matscience, Madras 1971, 43–86 (1972).Google Scholar
  7. 7.
    M. OSIMA: On the representations of groups of finite order. Math. J. Okayama Univ. 1, 33–61 (1952).Google Scholar
  8. 8.
    H. PAHLINGS: Beiträge zur Theorie der projectiven Darstellungen endlicher Gruppen. Mitt. Math. Sem. Gießen, Heft 77 (1968).Google Scholar
  9. 9.
    W.F. REYNOLDS: Projective representations of finite groups in cyclotomic fields. Illinois J. Math. 9, 191–198 (1965).Google Scholar
  10. 10.
    I. SCHUR: Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. reine angew. Math. 127, 20–50 (1904).Google Scholar
  11. 11.
    K. YAMAZAKI: On projective representations and ring extinsions of finite groups. J. Fac. Science Univ. Tokyo 10, 147–195 (1964).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jürgen Tappe
    • 1
  1. 1.Lehrstuhl B für Mathematik der RWTH AachenAachenWest Germany

Personalised recommendations