manuscripta mathematica

, Volume 65, Issue 4, pp 465–477 | Cite as

On the class numbers of cyclotomic fields

  • Kuniaki Horie


The finiteness of the number of cyclotomic fields whose relative class numbers have bounded odd parts will be verified and then all the cyclotomic fields with relative class numbers non-trivial 2-powers will be determined.


Number Theory Algebraic Geometry Topological Group Class Number Relative Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedman, E.: Ideal class groups in basic\(\mathbb{Z}_{P_1 } \times \cdots \times \mathbb{Z}_{P_s }\)-extensions of abelian number fields. Invent. math.65, 425–440 (1982)Google Scholar
  2. 2.
    Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin: Akademie 1952Google Scholar
  3. 3.
    Horie, K.: On Iwasawa λ -invariants of imaginary abelian fields. J. Number Theory27, 238–252 (1987)Google Scholar
  4. 4.
    Horie, K., Horie, M.: CM-fields and exponents of their ideal class groups. Acta Arith.55 (to appear)Google Scholar
  5. 5.
    Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg20, 257–258 (1956)Google Scholar
  6. 6.
    Kimura, T., Horie, K.: On the Stickelberger ideal and the relative class number. Trans. Amer. Math. Soc.302, 727–739 (1987)Google Scholar
  7. 7.
    Linden, F. van der: Class number computations of real abelian number fields. Preprint. Univ. of Amsterdam, 1980Google Scholar
  8. 8.
    Masley, J.: Solution of the class number two problem for cyclotomic fields. Invent. math.28, 243–244 (1975)Google Scholar
  9. 9.
    Masley, J., Montgomery, H.: Cyclotomic fields with unique factorization. J. reine angew. Math.286/287, 248–256 (1976)Google Scholar
  10. 10.
    Schrutka von Rechtenstamm, G.: Tabelle der (Relativ-) Klassenzahlen der Kreiskörper, deren ø-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist. Abh. Deutschen Akad. Wiss. Berlin, Kl. Math. Phis. 2, 1–64 (1964)Google Scholar
  11. 11.
    Tateyama, K.: Maillet's determinant. Sci. Papers Coll. Gen. Edu. Univ. Tokyo32, 97–100 (1982)Google Scholar
  12. 12.
    Uchida, K.: Class numbers of imaginary abelian number fields, I. Tôhoku Math. J.23, 97–104 (1971)Google Scholar
  13. 13.
    Uchida, K.: Imaginary abelian number fields of degrees 2m with class number one. In: Proceedings of the international conference on class numbers and fundamental units of algebraic number fields, Katata 1986 (pp. 151–170; see also the correction in “Zentralblatt” by Uchida himself)Google Scholar
  14. 14.
    Washington, L.: Introduction to cyclotomic fields. New York Heidelberg Berlin: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Kuniaki Horie
    • 1
  1. 1.Department of MathematicsYamaguchi UniversityYamaguchiJapan

Personalised recommendations