Advertisement

manuscripta mathematica

, Volume 57, Issue 1, pp 55–99 | Cite as

Remarks on the regularity of the minimizers of certain degenerate functionals

  • Mariano Giaquinta
  • Giuseppe Modica
Article

Keywords

Number Theory Algebraic Geometry Topological Group Degenerate Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. CHIPOT, L.C. EVANS- Linearization at infinity and Lipschitz estimates for certain problems in the Calculus of variations, pre-printGoogle Scholar
  2. [2]
    N. FUSCO, J. HUTCHINSON- Partial regularity for minimizers of certain functionals having non quadratic growth. Manuscripta math.54 (1985) 121,11 43Google Scholar
  3. [3]
    M. GIAQUINTA- Multiple integrals in the Calculus of Variations and Nonlinear elliptic systems. Princeton Univ. Press, Princeton 1983Google Scholar
  4. [4]
    M. GIAQUINTA, E. GIUSTI- On the regularity of minima of variational integrals. Acta Math.148 (1982) 31–46Google Scholar
  5. [5]
    M. GIAQUINTA, E. GIUSTI- Differentiability of minima of non-differentiable functionals. Inventiones Math.72 (1983) 285–298Google Scholar
  6. [6]
    M. GIAQUINTA, E. GIUSTI- Quasi-minima. Ann. Inst. H. Poincaré, Analyse non linéaire1 (1984) 79–107Google Scholar
  7. [7]
    M. GIAQUINTA, E. GIUSTI- Sharp estimates for the derivatives of local minima of variatΦnal integrals. Boll. UMI (6)3-A (1984) 239–248Google Scholar
  8. [8]
    M. GIAQUINTA, P.A. IVERT- Partial regularity for minima of variational integrals. Ank. für MathGoogle Scholar
  9. [9]
    M. GIAQUINTA, G. MODICA- Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse nonlinéaire3 (1986)Google Scholar
  10. [10]
    M. GIAQUINTA, J. SOUCEK- Harmonic maps into a hemisphere. Ann. Sc. Norm. Sup. Pisa12 (1985) 81–90Google Scholar
  11. [11]
    D. GILBARG, N.S. TRUDINGER- Elliptic partial differential equations of second order. Springer Verlag, Heidelberg 1977Google Scholar
  12. [12]
    W. JÄGER, H. KAUL- Relationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. J. reine angew. Math.343 (1983) 146–161Google Scholar
  13. [13]
    O.A. LADYZHENSKAYA, N.N. URAL'TSEVA- Linear and quasi-linear elliptic equations. Acad. Press, New York, 1968Google Scholar
  14. [14]
    C.B. MORREY- Multiple integrals in the Calculus of Variations. Springer Verlag Hildelberg 1966Google Scholar
  15. [15]
    J. MOSER- On Harnack's inequality for elliptic differential equations. Comm. Pure Appl. Math.14 (1961) 577–591Google Scholar
  16. [16]
    R. SCOEN, K. UHLENBECK- Regularity of minimizing harmonic maps into the sphere. Inventiones Math.78 (1984) 89–100Google Scholar
  17. [17]
    K. UHLENBECK- Regularity for a class of nonlinear elliptic systems. Acta Math.138 (1977) 219–240Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Mariano Giaquinta
    • 1
  • Giuseppe Modica
    • 1
  1. 1.Istituto di Matematica ApplicataUniversità di Firenze Facoltà di IngegneriaFirenze

Personalised recommendations