Advertisement

manuscripta mathematica

, Volume 57, Issue 1, pp 33–48 | Cite as

Chernklassen semi-stabiler Rang-3-vektorbündel auf kubischen Dreimannigfaltigkeiten

  • Ulrich Schafft
Article
  • 19 Downloads

Abstract

It is shown that the third Chern-number of a semistable Rk-3-vector bundle on a smooth hypersurface of degree 3 in ℙ4 can be bounded by the first and the second Chern-number of the bundle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. London Math. Soc. 7, 414–452 (1957)Google Scholar
  2. [2]
    Bănică, C.; Coandă, J.: Existence of Rank 3 Vector Bundles with given Chern Classes on homogeneous Rational 3-Folds. manuscr. math. 51, 121–143 (1985)Google Scholar
  3. [3]
    Bănică, C.; Putinar, M.: On complex vector bundles on rational threefolds. Math. Proc. Comb. Phil. Soc. 97, 279–288 (1985)Google Scholar
  4. [4]
    Barth, W.: Some properties of stable rank-2 vector bundles on ℙn. Math. Ann. 226, 125–150 (1977)Google Scholar
  5. [5]
    Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math USSR, Izvestija 13, 499–555 (1979)Google Scholar
  6. [6]
    Elencwajg, G.; Forster, O.: Bounding Cohomology Groups of Vector Bundles on ℙn. Math. Ann. 246, 251–270 (1980)Google Scholar
  7. [7]
    Flenner, H.: Restrictions of Semistable Bundles on Projective Varieties. Comment. Math. Helvetici 59 (1984)Google Scholar
  8. [8]
    Griffiths, P.A.: Positive Vector Bundles. In Global Analysis. Papers in Honor of K. Kodaira, Tokyo 1969Google Scholar
  9. [9]
    Harder, G.; Narasimhan, M.S.: On the Cohomology Groups of Moduli Spaces of Vector Bundles on Curves. Math.Ann. 212, 212–248 (1975)Google Scholar
  10. [10]
    Hartshorne, R.: Algebraic Geometry. Springer 1977Google Scholar
  11. [11]
    Maruyama, M.: Boundedness of semistable sheaves of small ranks. Nagoya Math. J. 78, 65–94 (1980)Google Scholar
  12. [12]
    Maruyama, M.: The theorem of Grauert-Mülich-Spindler. Math. Ann. 255, 317–333 (1981)Google Scholar
  13. [13]
    Okonek, C.; Schneider, M.; Spindler, H.: Vector bundles on complex projective spaces. Birkhäuser 1980Google Scholar
  14. [14]
    Schneider, M.: Chernklassen semi-stabiler Vektorraumbündel vom Rang 3 auf dem komplex-projectiven Raum. Crelle J. 315, 211–220 (1980)Google Scholar
  15. [15]
    Schwarzenberger, L.E.: Vector bundles on algebraic surfaces. Proc. London Math. Soc. 11, 601–622 (1961)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Ulrich Schafft
    • 1
  1. 1.Mathematisches Institut der UniversitätBayreuth

Personalised recommendations