Advertisement

manuscripta mathematica

, Volume 19, Issue 1, pp 75–104 | Cite as

Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte

  • G. Scheja
  • U. Storch
Article

Abstract

Finite projective algebras B over arbitrary commutative rings A are discussed with respect to dualizing B-modules over B and over A. This leads to quasi-Frobenius algebras in a natural way. Several change of rings characterizations of quasi-Frobenius algebras are given.

Secondly, locally complete intersections and complete intersections are considered unter the point of view of quasi-Frobenius algebras resp. Frobenius algebras. Characterizations of complete intersections are obtained by using algebraic K-theory and differential modules. Some applications refer to representations of affine curves as idealtheoretic complete intersections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Auslander, M. u. Goldmann, O.: Maximal Orders. Trans. Amer. Math. Soc.97, 1–24 (1960).Google Scholar
  2. [2]
    Bass, H.: On the ubiquity of Gorenstein rings. Math. Z.82, 8–28 (1963).Google Scholar
  3. [3]
    —: Algebraic K-theory. New York: W. A. Benjamin 1968.Google Scholar
  4. [4]
    —: Libération des modules projectifs sur certain anneaux de polynômes. Sém. Bourbaki 26e année, 1973/74, n° 448. Lect. Notes in Math.431, 228–254 (1975).Google Scholar
  5. [5]
    Bourbaki, N.: Algèbre commutative. Chap I–IV. Paris: Hermann 1961.Google Scholar
  6. [6]
    Fossum, R. M.: The Divisor Class Group of a Krull Domain. Ergeb. d. Math.74. Berlin: Springer 1973.Google Scholar
  7. [7]
    Hasse, H.: Zahlentheorie. 2. Aufl. Berlin: Akademie-Verlag 1963.Google Scholar
  8. [8]
    Jans, J. P.: Rings and Homology. New York: Holt, Rinehart and Winston 1964.Google Scholar
  9. [9]
    Lindel, H.: Wenn B ein Hauptidealring ist, so sind alle projektiven B[X,Y]-Moduln frei. Math. Ann. 1976.Google Scholar
  10. [10]
    Moore, J. C. u. Peterson, F. P.: Nearly Frobeniusalgebras, Poincaré algebras and their modules. J. Pure Appl. Algebra3, 83–93 (1973).Google Scholar
  11. [11]
    Roquette, P.: Über den Singularitätsgrad von Teilringen in Funktionenkörpern. Math. Z.77, 228–240 (1961).Google Scholar
  12. [12]
    Scheja, G. u. Storch, U.: Differentielle Eigenschaften der Lo alisierungen analytischer Algebren. Math. Ann.197, 137–170 (1972).Google Scholar
  13. [13]
    —: Lokale Verzweigungstheorie. Vorlesung Über kommutative Algebra. Schriftenreihe des math. Inst. der Univ. Freiburg i. Ue.5, 1–151 (1975).Google Scholar
  14. [14]
    —: Über Spurfunktionen bei vollständigen Durchschnitten. J.f.d.r.u.a. Math.278/279, 174–190 (1975).Google Scholar
  15. [15]
    Serre, J.-P.: Sur les modules projectifs. Sém.Dub reil, n° 2 (1960/61).Google Scholar
  16. [16]
    Vasconcelos, W.V.: A note on normality and the module of differentials. Math. Z.105, 291–293 (1968).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. Scheja
    • 1
  • U. Storch
    • 2
  1. 1.Mathematisches InstitutRuhr-Universität BochumBochum
  2. 2.Fachber.6 Mathematik/PhilosophieUniversität OsnabrückOsnabrück

Personalised recommendations