Skip to main content
Log in

Sur l'homotopie rationnelle des espaces fonctionnels

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let X be a nilpotent space such that it exists k⩾1 with Hp (X,ℚ) = 0 p > k and Hk (X,ℚ) ≠ 0, let Y be a (m−1)-connected space with m⩾k+2, then the rational homotopy Lie algebra of YX (resp.\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) is isomorphic as Lie algebra, to H* (X,ℚ) ⊗ (Π* (ΩY) ⊗ ℚ) (resp.+ (X,ℚ) ⊗ (Π* (ΩY) ⊗ ℚ)). If X is formal and Y Π-formal, then the spaces YX and\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) are Π-formal. Furthermore, if dim Π* (ΩY) ⊗ ℚ is infinite and dim H* (Y,Q) is finite, then the sequence of Betti numbers of\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) grows exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Bibliographie

  1. FÉLIX Y., HALPERIN S., THOMAS J.C.: The homotopy Lie algebra for finite complexes - Publ. IHES56, 387–410 (1983)

    Google Scholar 

  2. GRIVEL P.P.: Formes différentielles et suites spectrales-Ann. de l'Institut Fourier,29, 17–37 (1979)

    Google Scholar 

  3. HAEFLIGER A.: Rational homotopy of the space of sections of a nilpotent bundle. Trans.A.M.S.,273, 2, 609–620 (1982).

    Google Scholar 

  4. HALPERIN S.: Lectures on minimal models — Mémoire SMF, Vol. 9/10, (1983)

  5. MILLER H.: The Sullivan conjecture on maps from classifying spaces - Ann. of Math.,120, 39–87 (1984)

    Google Scholar 

  6. MOORE J.C.: On a theorem of Borsuk - Funda. Math,43, 195–201, (1956)

    Google Scholar 

  7. OUKILI A.: Sur l'homologie d'une algèbre différentielle de Lie — Thèse de 3ème cycle, Nice (1978)

  8. QUILLEN D.: Rational homotopy theory - Ann. Math,90, 205–295, (1969)

    Google Scholar 

  9. SHIBATA K.: On Haefliger's model for the Gelfand-Fuchs cohomology - Japan J. Math.,7, 379–415, (1981)

    Google Scholar 

  10. SILVEIRA F. da: Rational homotopy theory of fibrations - Pacific Journ. of Math,113, 1–35, (1984)

    Google Scholar 

  11. SULLIVAN D.: Infinitesimal computations in topology - Publ. IHES,47, 269–331, (1977)

    Google Scholar 

  12. TANRÈ D.: Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan - LNM no1025, Springer-Verlag

  13. THOM R.: L'homologie des espaces fonctionnels — Colloque Top. Alg. Louvain, 29–39, (1956)

  14. VIGUÉ-POIRRIER M.: Dans le fibré de l'espace des lacets libres, la fibre n'est pas en général TNCZ - Math Z.,181, 537–542, (1982)

    Google Scholar 

  15. VIGUÉ-POIRRIER M.: Cohomologie de l'espace des sections d'un fibré et cohomologie de Gelfand-Fuchs d'une variété - Proc. of the 1983 Nordic summer school on Algebra, Algebraic Topology -L.N.M. no1183, 371–395, (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigué-Poirrier, M. Sur l'homotopie rationnelle des espaces fonctionnels. Manuscripta Math 56, 177–191 (1986). https://doi.org/10.1007/BF01172155

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172155

Navigation