manuscripta mathematica

, Volume 54, Issue 3, pp 323–347 | Cite as

Boundary configurations spanning continua of minimal surfaces

  • Robert Gulliver
  • Stefan Hildebrandt


Number Theory Minimal Surface Algebraic Geometry Topological Group Boundary Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ALT, H.W., and F. TOMI: Regularity and finiteness of solutions to the free boundary problem for minimal surfaces. Preprint No. 659, Bonn, SFB 72Google Scholar
  2. [2]
    BEESON, M.: Some results on finiteness in Plateau's problem, Part I. Math. Z.175, 103–123 (1980)Google Scholar
  3. [3]
    BLISS, G.A.: Calculus of Variations. M.A.A., The Open CourtPubl. Comp., La Salle, Ill. 1925Google Scholar
  4. [4]
    BÖHME, R.: New results on the classical problem of Plateau on the existence of many solutions. Séminaire Bourbaki, 34e année, 1981/82, no. 579Google Scholar
  5. [5]
    BÖHME, R., and A.J. TROMBA: The index theorem for classical minimal surfaces. Annals of Math.113, 447–499 (1981)Google Scholar
  6. [6]
    BOLZA, O.: Vorlesungen über Variationsrechnung. B.G. Teubner, Leipzig 1909 (Nachdruck 1933)Google Scholar
  7. [7]
    CARATHEÓDORY, C.: Variationsrechnung und partielle Differentialgleichungen erster Ordnung. B.G. Teubner, Leipzig & Berlin (1935)Google Scholar
  8. [8]
    COURANT, R.: Dirichlet's Principle, Conformal Mapping and Minimal Surfaces. New York, Interscience 1950.Google Scholar
  9. [9]
    DOUGLAS, J.: The problem of Plateau for two contours. J. Math. Phys.10, 315–359 (1931)Google Scholar
  10. [10]
    GERHARDT, C.: H-surfaces in Lorentzian manifolds. Comm. Math. Phys.89, 523–553 (1983)Google Scholar
  11. [11]
    GRÜTER, M., S. HILDEBRANDT, and J.C.C. NITSCHE: Regularity for stationary surfaces of constant mean curvature with free boundaries. Preprint No. 706, Bonn, SFB 72Google Scholar
  12. [12]
    GULLIVER, R.: Branched immersions of surfaces and reduction of topological type. Part II. Math. Ann.230, 25–48 (1977)Google Scholar
  13. [13]
    HARDT, R., and L. SIMON: Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. of Math. Studies110, 439–486 (1979)Google Scholar
  14. [14]
    HILDEBRANDT, S., and J.C.C. NITSCHE: A uniqueness theorem for surfaces of least area with partially free boundaries on obstacles. Archive Rat. Mech. Anal.79, 189–218 (1982)Google Scholar
  15. [15]
    MEEKS, W.W., and S.T. YAU: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)Google Scholar
  16. [16]
    MORGAN, F.: A smooth curve in ℝ3 bounding a continuum of minimal manifolds. Archive Rat. Mech. Anal.75, 193–197 (1980)Google Scholar
  17. [17]
    NITSCHE, J.C.C: Vorlesungen über Minimalflächen. Berlin-Heidelberg-New York, Springer 1975Google Scholar
  18. [18]
    NITSCHE, J.C.C: A new uniqueness theorem for minimal surfaces. Archive Rat. Mech. Anal.52, 319–329 (1973)Google Scholar
  19. [19]
    NITSCHE, J.C.C: Contours bounding at most finitely many solutions of Plateau's problem. Complex Analysis and its Applications, dedicated to I.N. Vekua. Moscow: Nauka 1978Google Scholar
  20. [20]
    NITSCHE, J.C.C.: Stationary partitioning of convex bodies. PreprintGoogle Scholar
  21. [21]
    QUIEN, N.: Über die endliche Lösbarkeit des Plateau-Problems in Riemannschen Mannigfaltigkeiten. PreprintGoogle Scholar
  22. [22]
    SAUVIGNY, F.: Ein Eindeutigkeitssatz für Minimalflächen im ℝp mit polygonalem Rand. To appear in: Journ. für die Reine u. Angew. Math.Google Scholar
  23. [23]
    SCHOEN, R.: Uniqueness, symmetry and embeddedness of minimal surfaces. J. Differential Geom.18, 791–809 (1983)Google Scholar
  24. [24]
    SHIFFMAN, M.: On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Annals of Math.63, 77–90 (1956)Google Scholar
  25. [25]
    SCHWARZ, H.A.: Gesammelte Mathematische Abhandlungen, Band I. Springer, Berlin 1890Google Scholar
  26. [26]
    TOMI, F.: On the local uniqueness of the problem of least area. Arch. Rat. Mech. Anal.52, 312–318 (1973)Google Scholar
  27. [27]
    TOMI, F.: On the finite solvability of Plateau's problem. Springer Lecture Notes Math. No. 597 (1976)Google Scholar
  28. [28]
    TOMI, F.: A finiteness result in the free boundary value problem for minimal surfaces. Preprint 1985Google Scholar
  29. [29]
    TROMBA, A.: On Plateau's problem for minimal surfaces of higher genus in ℝn. Preprint No. 580, Bonn, SFB 72Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Robert Gulliver
    • 1
  • Stefan Hildebrandt
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations