Advertisement

manuscripta mathematica

, Volume 59, Issue 4, pp 471–490 | Cite as

On the Gorenstein property of Rees Algebras

  • Manfred Herrmann
  • Shin Ikeda
Article

Abstract

Let (A,M) be a noetherian local ring. For certain equimultiple ideals I in A we try to relate the Gorenstein property of the Rees algebra⊕n and of A itself. In particular we n≥0 treat the case of equimultiple prime ideals of height two and the case I=M. The results underscore a natural conjecture, s. Thm. 2.6. and 3.2.

Keywords

Number Theory Algebraic Geometry Prime Ideal Topological Group Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [0]
    BASS, H.: On the ubiquity of Gorenstein rings. Math. Z.82, 8–28 (1963)Google Scholar
  2. [1]
    BRODMANN, M.: A Macaulayfication of unmixed domains. J. Algebra44, 221–234 (1977)Google Scholar
  3. [2]
    FLENNER, H.: Die Sätze von Bertini für lokale Ringe. Math. Ann.229, 97–111 (1977)Google Scholar
  4. [3]
    GROTHE, U., HERRMANN, M., ORBANZ, U.: Graded Cohen-Macaulay rings associated to equimultiplicity ideals. Math. Z.186, 531–556 (1984)Google Scholar
  5. [4]
    GOTO, S.: Buchsbaum rings of maximal embedding dimension. J. Algebra76, 383–399 (1982)Google Scholar
  6. [5]
    GOTO, S., SHIMODA, Y.: On the Gorensteinness of Rees and form rings of almost complete intersections. Nagoya Math. J.92, 69–88 (1983)Google Scholar
  7. [5']
    GOTO, S.: Blowing up of Buchsbaum rings. London Math. Soc. Lecture Notes Ser.72 (Comm. Algebra: Durham 1981), 140–162, Camb. Univ. Press 1983Google Scholar
  8. [6]
    HOCHSTER, M.: Canonical elements in local cohomology modules and the direct summand conjecture. J. Algebra84, 503–553 (1983)Google Scholar
  9. [7]
    HUNEKE, C.: A remark concerning multiplicities. Proc. Am. Math. Soc.85, 331–332 (1982)Google Scholar
  10. [8]
    IKEDA, S.: Remarks on Rees algebras and graded rings with multiplicity 3. In preparationGoogle Scholar
  11. [9]
    IKEDA, S., HERRMANN, M.: Remarks on liftings of Cohen-Macaulay property. Nagoya Math. J.92, 121–132 (1983)Google Scholar
  12. [10]
    IKEDA, S., TRUNG, N.: When is the Rees algebra Cohen-Macaulay. Preprint 1984/85. To appearGoogle Scholar
  13. [11]
    IKEDA, S., HERRMANN, M., ORBANZ, U.: Testing the Cohen-Macaulay property under blowing up. Comm. Algebra14(7), 1315–1342 (1986)Google Scholar
  14. [12]
    IKEDA, S.: On the Gorensteinness of Rees algebras over local rings. Thesis Nagoya Univ. 1985 and Nagoya Math. J.102, 135–154 (1986)Google Scholar
  15. [13]
    IKEDA, S., HERRMANN, M.: Blowing up rings of low multiplicity. Proceedings of the La Rabida conference on Algebraic Geometry 1984. To appearGoogle Scholar
  16. [14]
    HERRMANN, M., SCHMIDT, R., VOGEL, W.: Theorie der normalen Flachheit. Teubner Texte zur Mathematik, Leipzig 1977Google Scholar
  17. [15]
    NAGATA, M.: Local rings. J. Wiley, New York-London-Toronto 1962Google Scholar
  18. [16]
    SUZUKI, N.: Canonical duality for Buchsbaum modules- an application of Goto's lemma on Buchsbaum modules. PreprintGoogle Scholar
  19. [17]
    SCHENZEL, P., Ngo Viet Trung, Nguyen Tu Cuong: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr.85, 57–73 (1978)Google Scholar
  20. [18]
    SCHENZEL, P.: Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe. Lecture Notes in Mathematics907, Springer Verlag 1982Google Scholar
  21. [19]
    STANLEY, R.P.: Cohen-Macaulay complexes, in: Proceedings of the Advanced Study Institute in higher combinatorics, 51–62, 1976 (Berlin)Google Scholar
  22. [20]
    Rossi, M.: A note on Symmetrie algebras which are Gorenstein rings. Comm. in Algebra11 (22), 2275–2291 (1983)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Manfred Herrmann
    • 1
  • Shin Ikeda
    • 2
  1. 1.Mathematisches Institut der Universität zu KölnKöln 41West Germany
  2. 2.Department of MathematicsGifu College of EducationGifuJapan

Personalised recommendations