manuscripta mathematica

, Volume 59, Issue 4, pp 457–469 | Cite as

Wronskians and linear independence in fields of prime characteristic

  • Arnaldo Garcia
  • J. F. Voloch


Number Theory Algebraic Geometry Topological Group Prime Characteristic Linear Independence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HASSE, H., SCHMIDT, F.K.: Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. J.reine angew.Math.177, 215–237, (1937)Google Scholar
  2. [2]
    HEFEZ, A.: Projective plane curves in Positive Characteristic, preprintGoogle Scholar
  3. [3]
    MATZAT, B.H.: Über Weierstrasspunkte von Fermatkörpern. Dissertation, Universität Karlsruhe (1972)Google Scholar
  4. [4]
    OKUGAWA, K.: Basic properties of differential fields of an arbitrary characteristic and the Picard-Vessiot theory. J.Math. Kyoto Univ.2, 295–322, (1963)Google Scholar
  5. [5]
    PARDINI, R.: Some remarks on plane curves over fields of finite characteristic. Composito Math.60, 3–17, (1986)Google Scholar
  6. [6]
    SCHMIDT, F.K.: Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern. Math.Z.45, 62–74, (1939)Google Scholar
  7. [7]
    SCHMIDT, F.K.: Zur arithmetischen Theorie der algebraischen Funktionen. II. Math.Z.45, 75–96, (1939).Google Scholar
  8. [8]
    STÖHR, K.O., VOLOCH, J.F.: Weierstrass points and curves over finite fields. Proc.London Math.Soc. (3)52, 1–19, (1986)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Arnaldo Garcia
    • 1
  • J. F. Voloch
    • 1
  1. 1.Instituto de Matemática Pura e Aplicada (IMPA)Rio de Janeiro-R.J.Brazil

Personalised recommendations