manuscripta mathematica

, Volume 17, Issue 3, pp 227–252 | Cite as

Blocks and defect groups of monomial groups

  • Jürgen Tappe


In this paper the p-block structure and the defect groups of finite monomial groups are determined.


Number Theory Algebraic Geometry Topological Group Defect Group Monomial Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Nakayama, “On some modular properties of irreducible representations of the symmetric group”, Jap. J. Math., 17 (1940), 165–184, 411–423.Google Scholar
  2. 2.
    R. Brauer and G. de B. Robinson, “On a conjecture by Nakayama”, Trans. Roy. Soc. Can., ser. III, sec. III, 41 (1947), 11–25.Google Scholar
  3. 3.
    M. Osima, “On the representations of the generalized symmetric group II”, Math. J. Okayama Univ. 6 (1956), 81–97.Google Scholar
  4. 4.
    J. Tappe, “Zur modularen Darstellungstheorie von Kranzprodukten”, Mitt. math. Sem. Univ. Giepen, 112 (1974), 1–18Google Scholar
  5. 5.
    N. Meier und J.Tappe, “Ein neuer Beweis der Nakayama-Vermutung über die Blockstruktur symmetrischer Gruppen”, (to appear in Bull. London Math. Soc.).Google Scholar
  6. 6.
    A. Kerber, “Representations of permutation groups I”. (Lecture Notes in Mathematics 240. Springer, Berlin, 1971).Google Scholar
  7. 7.
    -, “Characters of wreath products and some applications to the representation theory and combinatorics” (to appear)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Jürgen Tappe
    • 1
  1. 1.Lehrstuhl D für Mathematikder RWTH Aachen51 AachenWest-Germany

Personalised recommendations