Advertisement

manuscripta mathematica

, Volume 43, Issue 1, pp 73–83 | Cite as

On the obstacle problem with a volume constraint

  • Goswin Eisen
Article

Abstract

We show that the solutions u∈K of
$$\mathop \smallint \limits_\Omega \nabla u\nabla (u - v)dx \leqq 0forallv\varepsilon K$$
where
are of class Co,α (Ω) or Co,α (Ω), if the obstacles have this property. The same fact is true for systems of variational inequalities with constant coefficients, when there are no obstacles.

Keywords

Variational Inequality Number Theory Algebraic Geometry Topological Group Constant Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    KINDERLEHRER, D., STAMPACCHIA, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York 1980.Google Scholar
  2. [2]
    HILDEBRANDT, S., WENTE, H.: Variational Problems with Obstacles and a Volume Constraint. Math. Zeitschrift135, 55–68 (1973).Google Scholar
  3. [3]
    HILDEBRANDT, S., MEIER, M.: On Variational Problems with Obstacles and Integral Constraints for Vector-Valued Functions. Man. math.28, 185–206 (1979).Google Scholar
  4. [4]
    EISEN, G.: Ober die Regularität schwacher Lösungen von Variationsproblemen mit Hindernissen und Integralbedingungen. Preprint No. 512, Sonderforschungsbereich 72, Bonn 1982 (Thesis).Google Scholar
  5. [5]
    CAMPANATO, S.: Equazioni ellitiche del secondo ordine e spaziL 2,λ. Annali Mat. Pura Appl.69, 321–381 (1965).Google Scholar
  6. [6]
    MORREY, C.B.: Multiple Integrals in the Calculus of Variations. Springer, New York 1966.Google Scholar
  7. [7]
    GIAQUINTA, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Vorlesungsreihe SFB 72 No. 6, Bonn 1981.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Goswin Eisen
    • 1
  1. 1.Mathematisches InstitutUniversität BonnBonn 1BRD

Personalised recommendations