Advertisement

manuscripta mathematica

, Volume 43, Issue 1, pp 13–44 | Cite as

Isoparametric triple systems of FKM-type II

  • Josef Dorfmeister
  • Erhard Neher
Article

Abstract

This paper continues the investigation of isoparametric triple systems of FKM-type started in [9]. We classify all such triple systems which are congruent to an isoparametric triple system of algebra type. We also consider the question to what extent the Clifford sphere of an FKM-triple is determined by the triple product. As an application the automorphism group of an FKM-triple is described.

Keywords

Number Theory Automorphism Group Algebraic Geometry Topological Group Triple System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.F. Atiyah, R. Bott, A. Shapiro: Clifford Modules, Topology Vol. 3, Suppl. 1, 3–38.Google Scholar
  2. [2]
    E. Cartan: Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z.45, 335–367 (1939).Google Scholar
  3. [3]
    E. Cartan: Sur quelques familles remarquables d'hypersurfaces, C.R. Congrès Math. Liège 30–41, (1939).Google Scholar
  4. [4]
    E. Cartan: Sur des familles remarquables d'hypersurfaces isoparamétriques des espaces sphériques á 5 et 9 dimensions, Revista Univ. Tucuman, série A,1, 5–22 (1940).Google Scholar
  5. [5]
    C. Chevalley: The Algebraic Theory of Spinors, Columbia University Press, (1954).Google Scholar
  6. [6]
    J. Dorfmeister, E. Neher: An algebraic approach to isoparametric hypersurfaces in spheres I, to appear in Tôhoku Math. J.Google Scholar
  7. [7]
    J. Dorfmeister, E. Neher: An algebraic approach to isoparametric hypersurfaces in spheres II, to appear in Tôhoku Math. J.Google Scholar
  8. [8]
    J. Dorfmeister, E. Neher: Isoparametric triple systems of algebra type, to appear in Osaka J. Math.Google Scholar
  9. [9]
    J. Dorfmeister, E. Neher: Isoparametric triple systems of FKM-type I, to appear in Abh. Math. Sem. Hamburg.Google Scholar
  10. [10]
    J. Dorfmeister, E. Neher: Isoparametric triple systems of FKM-type III, to appear.Google Scholar
  11. [11]
    D. Ferus: Notes on isoparametric hypersurfaces, Escolo de Geometria Differencial, Universidade Estadual de Campainas (1980).Google Scholar
  12. [12]
    D. Ferus, H. Karcher, H.F. Münzner: Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z.177, 479–502 (1981).Google Scholar
  13. [13]
    A. Hurwitz: Über die Komposition der quadratischen Formen von beliebig vielen Variablen, Mathematische Werke, vol. II, 565–571, Basel: Birkhäuser 1932.Google Scholar
  14. [14]
    N. Jacobson: Composition algebras and their automorphisms, Rend. Circ. Math. Palermo 7, 55–80 (1958).Google Scholar
  15. [15]
    N. Jacobson: Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publications XXXIX, Providence, Rhode Island 1968.Google Scholar
  16. [16]
    H.F. Münzner: Isoparametrische Hyperflächen in Sphären I, Math. Ann.251, 57–71 (1980).Google Scholar
  17. [17]
    H.F. Münzner: Isoparametrische Hyperflächen in Sphären II, Math. Ann.256, 215–232 (1981).Google Scholar
  18. [18]
    K. Nomizu: Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Amer. Math. Soc.79, 1184–1188 (1973/4).Google Scholar
  19. [19]
    K. Nomizu: Elie Cartan's work on isoparametric hypersurfaces, Diff. Geom. Symp. Pure Math.27, II, Standford, 1973.Google Scholar
  20. [20]
    H. Ozeki, M. Takeuchi: On some types of isoparametric hypersurfaces in spheres I, Tôhoku Math. J.27 515–559 (1975).Google Scholar
  21. [21]
    H. Ozeki, M. Takeuchi: On some types of isoparametric hypersurfaces in spheres II, Tôhoku Math. J.,28 7–55 (1976).Google Scholar
  22. [22]
    R. Takagi, T. Takahashi: On the principal curvatures of homogeneous hypersurfaces in a sphere, in: Differential Geometry in honor of K. Yano Tokyo 1972, 469–481.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Josef Dorfmeister
    • 1
  • Erhard Neher
    • 2
  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Math. Institut der Univ.MünsterWest Germany

Personalised recommendations