Advertisement

manuscripta mathematica

, Volume 21, Issue 2, pp 117–133 | Cite as

Bornological and ultrabornological C(X;E) spaces

  • Jean Schmets
Article

Abstract

Denote by Cs(X;E) the space of the continuous functions defined on the completely regular and Hausdorff space X, with values in the locally convex topological vector space E, when it is endowed with the simple or point-wise convergence topology. We give here some conditions on X and on E under which the space Cs(X;E) is bornological or ultrabornological and characterize in some cases the corresponding associated spaces. We give also a few results concerning the case of the compact connvergence topology.

Keywords

Continuous Function Vector Space Number Theory Algebraic Geometry Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BUCHWALTER, H. Parties bornées d'un espace topologique complétement régulier. Sém. Choquet9 n°14 15 pages (1969–1970).Google Scholar
  2. [2]
    BUCHWALTER, H. Sur le théorème de Nachbin-Shirota. J. Math. Pures et Appl.51, 399–418 (1972).Google Scholar
  3. [3]
    BUCHWALTER, H., SCHMETS, J. Sur quelques propriétés de l'espace Cs (T). J. Math. Pures et Appl.52, 337–352 (1973).Google Scholar
  4. [4]
    DE WILDE, M., SCHMETS, J. Caractérisation des espaces C(X) ultrabornologiques. Bull.Soc.Roy.Sc.Liège,40, 119–121 (1971).Google Scholar
  5. [5]
    NACHBIN, L. Topological vector spaces of continuous functions. Proc. Nat. Acad. U.S.A.40, 471–474 (1954).Google Scholar
  6. [6]
    SCHMETS, J. Espaces de fonctions continues. Lecture Notes in Mathematics519. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  7. [7]
    SHIROTA, T. On locally convex vector spaces of continuous functions. Proc. Japan Acad.30, 294–298 (1954).Google Scholar
  8. [8]
    WARNER, S. The topology of compact convergence on continuous function spaces. Duke Math. J.25, 265–282 (1958).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jean Schmets
    • 1
  1. 1.Institut de MathématiqueUniversité de LiègeLiegeBelgium

Personalised recommendations