manuscripta mathematica

, Volume 41, Issue 1–3, pp 233–305 | Cite as

Auflösbare Gruppen auf denen nicht auflösbare Gruppen operieren

  • Hans Kurzweil


Let G be a finite solvable group and A a subgroup of Aut G such that ¦G¦ and ¦A¦ are coprime. A conjecture states: The nilpodent length of G is bounded by terms depending only on A and the fixed point group GA={g∈G¦gA=g}. For abelian, nilpotent or solvable A various bounds are known. In this paper we study the nonsolvable case and prove the conjecture for wide classes of nonsolvable groups A, especially in the fixed point free case GA=1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BERGER, T.R.: Nilpotent fixed point free automorphism groups of solvable groups. Math. Z.131, 305–312 (1973)Google Scholar
  2. 2.
    CURTIS, C.W., BENSON, D.J.: On the degrees and rationality of certain characters of finite Chevalley-groups. TAMS,165, 251–273 (1972)Google Scholar
  3. 3.
    CURTIS, C.W., KANTOR, W.M., SEITZ, G.M.: The 2-transitive permutation representations of the finite Chevalley-groups. TAMS,218, 1–59 (1976)Google Scholar
  4. 4.
    DADE, E.C.: Carter subgroups and Fitting heights of finite solvable groups. Ill. J. Math.13, 449–513 (1969)Google Scholar
  5. 5.
    GLAUBERMANN, G.: Fixed points in groups with operator groups. Math. Z.84, 120–125 (1964)Google Scholar
  6. 6.
    GREENBERG, P.J.: Mathieu groups. Courant Inst. of Math. Sciences New York Univ. (1973)Google Scholar
  7. 7.
    HUPPERT, B.: Endliche Gruppen I Springer Berlin (1967)Google Scholar
  8. 8.
    KURZWEIL, H.: Endliche Gruppen Springer Berlin (1977)Google Scholar
  9. 9.
    KURZWEIL, H.: p-Automorphismen von auflösbaren p′ Gruppen Math. Z.120, 326–354 (1971)Google Scholar
  10. 10.
    KURZWEIL, H.: Die Gruppe A5 als fixpunktfreie Automorphismengruppe. Erscheint im Ill. J. Math.Google Scholar
  11. 11.
    SHULT, E.: On groups admitting fixed point free abelian operator groups. Ill. J. Math.9, 701–720 (1965)Google Scholar
  12. 12.
    THOMPSON, J.G.: Automorphisms of solvable groups J. Algebra1, 259–267 (1964)Google Scholar
  13. 13.
    TURULL, A.: Automorphisms of solvable groups PH. D. dissertation, Univ. of Chicago 1982Google Scholar
  14. 14.
    TURULL, A.: Fitting heights of groups and of fixed points, erscheint.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Kurzweil
    • 1
  1. 1.Mathematisches Institut der Universität Erlangen-NürnbergErlangenW-Germany

Personalised recommendations