Advertisement

manuscripta mathematica

, Volume 41, Issue 1–3, pp 139–171 | Cite as

Structure and representations of noncommutative C*-Jordan algebras

  • Robert Burkhard Braun
Article

Abstract

We show that a unital n.c. (noncommutative) JB*-algebra has a faithful family of factor-representations of type I and determine the structure of n.c. JB*-factors: A n.c. JB*-factor is a commutative Jordan algebra, or flexible quadratic, or a quasi CC*-algebra.

Keywords

Number Theory Algebraic Geometry Topological Group Jordan Algebra Faithful Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ALBERT, A.A.: Power-associative rings, A,M,S,64, 552–593 (1948)Google Scholar
  2. [2]
    ALBERT, A.A.: A theory of trace admissable algebras. Proc. Mat. Acad. Sei. USA35, 317–322 (1949)Google Scholar
  3. [3]
    ALFSEN, E.M., HANCHE-OLSEN, H., SHULTZ, F.W.: State Spaces of C*-Algebras, Acta Math.144, 267–305 (1980)Google Scholar
  4. [4]
    ALFSEN, E.M., SHULTZ, F.W., STORMER, E.: A Gelfand-Neumark Theorem for Jordan Algebras. Advances in Math.28, 11–56 (1978)Google Scholar
  5. [5]
    ALVERMANN, K.: Normierte nichtkommutative Jordan-Algebren vom Typ I. Dissertation T.U. Braunschweig (1982)Google Scholar
  6. [6]
    ARAKI, H., ELLIOTT, A.: On the Definition of C*-algebras. Publ. RIMS, Kyoto Univ.9, 93–112 (1972)Google Scholar
  7. [7]
    ARENS, R.: The adjoint of a bilinear operation. Proc. A.N.S.2, 839–848 (1951)Google Scholar
  8. [8]
    ARENS, R.: Operations induced in function classes. Monatshefte für Mathematik55, 1–19 (1951)Google Scholar
  9. [9]
    BONSALL, F.F., DUNEAN, J.: Numerical Ranges I. London Math. Soc. Lecture Note Series 2, Cambridge, University Press 1971Google Scholar
  10. [10]
    BONSALL, F.F., DUNCAN, J.: Numerical Ranges II. London Math. Soc. Lecture Note Series 10, Cambridge, University Press 1973Google Scholar
  11. [11]
    BONSALL, F.F., DUNCAN, J.: Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 80. Heidelberg: Springer 1973Google Scholar
  12. [12]
    BRAUN, H., KOECHER, M.: Jordan-Algebren. Die Grundlehren der Mathematischen Wissenschaften Bd,128. Heidelberg: Springer 1965Google Scholar
  13. [13]
    BRAUN, R.B.: Ein Gelfand-Neumark Theorem für C* -alternative Algebren. Habilitationsschrift, Universität Tübingen (1981)Google Scholar
  14. [14]
    BRAUN, R.B,: Coordinatization of Alternative Algebras. Preprint, University of Tübingen (1982)Google Scholar
  15. [15]
    BRAUN, R.B.: C* -alternative Algebras. Preprint, University of Tübingen (1982)Google Scholar
  16. [16]
    BRAUN, R.B.: Structure and Representation of C* -alternative Algebras. Preprint, University of Tübingen (1982)Google Scholar
  17. [17]
    DUNFORD, N., SCHWARTZ, J.T.: Linear Operators I. New York: Interscience Publishers Inc. 1957Google Scholar
  18. [18]
    EDWARDS, C.M.: On Jordan W*-Algebras. Bull. Sei. Math. 2e série104, 393–403 (1980)Google Scholar
  19. [19]
    HANCHE-OLSEN, H.: A Note on the Bidual of a JB-Algebra. Math. Z.175. 29–31 (1980)Google Scholar
  20. [20]
    JACOBSON, N.: Structure and Representations of Jordan Algebras. Rhode Island: A.M.S. Colloquium Publications Vol. 39, 1968Google Scholar
  21. [21]
    JANSSEN, G.: Factor Representations of Typ I for Noncommutative JB- and JB*-Algebras. Preprint T.U. Braunschweig (1982)Google Scholar
  22. [22]
    KAPLANSKY, I.: Lecture on the 1976 St. Andrews Colloquium of the Edinburgh Math. Soc. (see also [35])Google Scholar
  23. [23]
    MARTINEZ-MORENO, J., MOJTAR-KAIDI, A., RODRIGUEZ-PALACIOS, A.: On a Nonassociative Vidav-Palmer Theorem. To appear in Quarterly J. of Math.Google Scholar
  24. [24]
    McCrimmon, K.: Noncommutative Jordan Rings. Transact. A.M.S.158. 1–33 (1971)Google Scholar
  25. [25]
    McCrimmon, K.: Structure and Representations of Noncommutative Jordan Algebras. Transact. A.M.S.121, 187–199 (1966)Google Scholar
  26. [26]
    OEHMKE, R.H.: On flexible algebras. Ann. of Math68, 211–230 (1958)Google Scholar
  27. [27]
    PAYA, R., PEREZ, J., RODRIGUEZ, A.: Noncommutative Jordan C*-Algebras. Manuscripta Math,37, 87–120 (1982)Google Scholar
  28. [26]
    RODRIGUEZ, A.: A Vidav-Palmer Theorem for Jordan C*-Algebras and Related Topics. J. London Math. Soc.22, 318–332 (1980)Google Scholar
  29. [29]
    SAKAI, S.: C-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd60. Heidelberg: Springer 1971Google Scholar
  30. [30]
    SCHAFER, R,D.: An Introduction to Nonassociative Algebras. New York: Academic Press 1960Google Scholar
  31. [31]
    SCHAFER, R.D.: Noncommutative Jordan Algebras of Characteristic Zero. Proc. A.M.S.6, 472–475 (1955)Google Scholar
  32. [32]
    SHULTZ, F.W.: On normed Jordan Algebras which are Banach Dual Spaces. J, Func, Anal,31. 360–376 (1979)Google Scholar
  33. [33]
    SINCLAIR, A.M.: The norm of a Hermitian element in a Banach algebra, Proc. A.M.S.28, 446–450 (1971)Google Scholar
  34. [34]
    SINCLAIR, A.M.: The Banach algebra generated by a hermitian operator. London Math. Soc,24, 681–691 (1972)Google Scholar
  35. [35]
    WRIGHT, J.D.M.: Jordan C*-algebras. Michigan J. Math,24, 291–302 (1977)Google Scholar
  36. [36]
    YOUNGSON, M.A.: A Vidav Theorem for Banach Jordan Algebras. Math. Proc. Camb. Phil. Soc.84, 263–272 (1978)Google Scholar
  37. [37]
    YOUNGSON, M.A.: Non Unital Banach Jordan Algebras and C*-Triple Systems, Proceedings Edinburgh Math. Soc.24, 19–29 (1981)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Robert Burkhard Braun
    • 1
  1. 1.Mathematisches Institut der Universität TübingenTübingenFederal Republic of Germany

Personalised recommendations