manuscripta mathematica

, Volume 39, Issue 2–3, pp 219–231 | Cite as

A note on compactness in Banach spaces

  • Heinz Cremers
  • Dieter Kadelka


Two simple concepts are presented for constructing necessary and sufficient compactness criteria in Banach spaces. The concepts are applied to the spaces lipα(T), C(T), and Lp(µ), where T is a compact metric space.


Banach Space Compactness Criterion Radon Measure Isometric Embedding Arbitrary Topological Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BILLINGSLEY,P.: Convergence of Probability Measures. Wiley, New York 1968zbMATHGoogle Scholar
  2. [2]
    BROOKS, J.K.; DINCULEANU, N.: Conditional expectations and weak and strong compactness in spaces of Bochner integrable functions. J. Mult. Analysis 9, 420–427 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    CHRISTOPEIT, N.: Existence of optimal stochastic controls under partial observation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 51, 201–213 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    DUNFORD, N.; SCHWARTZ, J.T.: Linear Operators, Part 1. Wiley-Interscience, New York 1957zbMATHGoogle Scholar
  5. [5]
    GINE, E.; MENDREKAR, V.; ZINN, J.: On sums of independent random variables with values in Lp (2 ≤ p < ∞). In Probability in Banach Spaces II, p.111–124, Springer, Berlin-Heidelberg-New York 1978Google Scholar
  6. [6]
    GRINBLAT, L.S.: A limit theorem for measurable random processes and its applications. Proc. Amer. Math. Soc. 61, 371–376 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    HEWITT, E.; STROMBERG, K.: Real and Abstract Analysis. Springer, Berlin-Heidelberg-New York 1965CrossRefzbMATHGoogle Scholar
  8. [8]
    HOLMES, R.B.: Geometric Functional Analysis and its Applications. Springer, New York-Heidelberg-Berlin 1975CrossRefzbMATHGoogle Scholar
  9. [9]
    IZUMI, S.: On the compactness of a class of functions. Proc. Imp. Acad. Tokyo 15, 111–113 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    JOHNSON, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Bull. Amer. Math. Soc. 75, 1334–1338 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    JOHNSON, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Amer. Math. Soc. 148, 147–169 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    KELLY, J.L.: General Topology. D. Van Nostrand, Princeton N.J. 1955Google Scholar
  13. [13]
    KINGMAN, J.; ROBERTSON, A.: On a theorem of Lyapunov. J. London Math. Soc. 43, 347–351 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    KOLMOGOROFF, A.N.: Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Göttinger Nachrichten 60–63 (1931)Google Scholar
  15. [15]
    SCHWARTZ, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press 1973Google Scholar
  16. [16]
    TULAJKOV, A.: Zur Kompaktheit im Raum Lp für p=1. Göttinger Nachrichten 167–170 (1933)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Heinz Cremers
    • 1
  • Dieter Kadelka
    • 1
  1. 1.Institut für Mathematische StatistikUniversität KarlsruheKarlsruheBRD

Personalised recommendations