Advertisement

manuscripta mathematica

, Volume 64, Issue 2, pp 253–260 | Cite as

Monotonicity of certain differential operators in divergence form

  • L. Boccardo
  • B. Dacorogna
Article

Keywords

Differential Operator Number Theory Divergence Form Algebraic Geometry Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M. Artola: Sur une classe de problèmes paraboliques quasi-linéaires; Boll. U.M.I. 4-B(1986), 51–70Google Scholar
  2. [BD]
    L. Boccardo-B. Dacorogna: A characterization of pseudo-monotone differential operators in divergence form; Comm. in P.D.E. (1984), 1107–1117Google Scholar
  3. [B]
    H. Brézis: Equations et inéquations non linéaires dans les espaces vectoriels en dualité; Ann. Inst. Fourier 18(1968), 115–175Google Scholar
  4. [C]
    J. Carillo: Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaire; C.R.A.S. 303(1986), 189–192Google Scholar
  5. [CC]
    J. Carillo-M. Chipot: On some nonlinear elliptic equations involving derivatives on the nonlinearity; Proc. Roy. Soc. Edinburgh 100 A(1985), 281–294Google Scholar
  6. [CM]
    M. Chipot-G. Michaille: Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities; I.M.A., Ocotber 1987, 40347 Minneapolis (preprint)Google Scholar
  7. [D]
    B. Dacorogna: Convexity of certain integrals of the calculus of variations; Proc. Roy. Soc. Edinburgh, 107 A(1987), 15–26Google Scholar
  8. [L]
    J.L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires; Dunod, Paris (1969)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. Boccardo
    • 1
  • B. Dacorogna
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma IRomaItaly
  2. 2.Département de MathématiquesEPFLLausanneSwitzerland

Personalised recommendations