Skip to main content
Log in

Ein verschärfter und verallgemeinerter Satz von Alexandrov

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove the following theorem: Suppose that n≥3 and 1≤j<n. Let d be the following generalized pseudo-euclidean distance function on ℝn

$$(\forall a,b) d(a,b) : = \sum\limits_{\nu = 1}^j { (a_\nu - b_\nu )^2 - \sum\limits_{\nu = j + 1}^n { (a_\nu - b_\nu )^2 .} }$$

If a function f:ℝn→ℝn satisfies the condition:

$$(\forall x,y \in \mathbb{R}^n ) d(f(x),f(y)) = 0 \Leftrightarrow d(x,y) = 0,$$
((*))

then f is affine. Moreover, f preserves distances up to a constant factor C≠0, i.e. d(f(x),f(y))=C·d(x,y) for every x,y.

In contrast to Alexandrov's result [1] we do not assume that f is bijective, and we also do not assume that j=n−1.

A very important part of our proof will be the discussion of a functional equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. ALEXANDROV, A.D.: A contribution to cronogeometry. Canad. J. Math.19 (1967), 1119–1128

    Google Scholar 

  2. BECKMAN, F.S., QUARLES, D.A. Jr.: On Isometries of Euclidian Spaces. Proc. Amer. Math. Soc.4 (1953), 810–815

    Google Scholar 

  3. BENZ, W.: Eine Beckman-Quarles-Charakterisierung der Lorentztransformationen des ℝn. Arch. Math. (Basel)34 (1980), 550–559

    Google Scholar 

  4. BENZ, W.: A Beckman Quarles Type Theorem for Plane Lorentz Transformations. Math. Z.177 (1981), 101–106

    Google Scholar 

  5. CACCIAFESTA, F.: An observation about a theorem of A.D. Alexandrov concerning Lorentz transformations. J. Geom.18 (1982), 5–8

    Google Scholar 

  6. DIEUDONNÉ, J.: Linear Algebra and Geometry. Hermann, Paris, 1969

    Google Scholar 

  7. HUCKENBECK, U.: Eine Beckman-Quarles-Aussage für reguläre Metriken von Index ≤2. Abh. Math. Sem. Univ. Hamburg,56 (1987), 15–33

    Google Scholar 

  8. LESTER, J.A.: Cone preserving mappings for quadratic cones over arbitrary fields. Canad. J. Math.29 (1977), 1247–1253

    Google Scholar 

  9. LESTER, J.A.: A characterization of non-Euclidian non-Minkowskian inner product space isometries. Utilitas Math.16 (1979), 101–109

    Google Scholar 

  10. LESTER, J.A., MC KIERNAN, M.A.: On null cone preserving mappings. Math. Proc. Cambridge Philos. Soc.81 (1977), no. 3, 455–462

    Google Scholar 

  11. PELESKA, J.: A characterization for isometries and conformal mappings of pseudo-Riemannian manifolds. Aeq. Math.27 (1984), 20–31

    Google Scholar 

  12. PIMENOV, R.I.: Necessary and sufficient conditions for the linearity of transformations which preserve cones. Mat. Zametki6 (1969), 490–493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huckenbeck, U. Ein verschärfter und verallgemeinerter Satz von Alexandrov. Manuscripta Math 59, 147–173 (1987). https://doi.org/10.1007/BF01158044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158044

Navigation