Journal of Materials Science

, Volume 29, Issue 8, pp 2119–2125 | Cite as

Microwave and conventional sintering of rapidly solidified Al2O3-ZrO2 powders

  • J. McKittrick
  • B. Tunaboylu
  • J. Katz
Papers

Abstract

The Al2O3-ZrO2 eutectic composition was rapidly solidified, forming amorphous and crystalline structures. The as-quenched material was crushed and pressed into pellets which were sintered conventionally or with microwaves. Conventional and microwave sintering at temperatures up to 1600 °C resulted in a microstructure where 100–200 nm ZrO2 grains were present intergranularly in the α-Al2O3 grains. Larger ZrO2 grains (∼1 μm) were found intergranularly. The as-quenched lamellar structure spheroidized during sintering at high temperatures. Boron contamination of the powders resulted in more homogeneous and dense as-fired samples but promoted the ZrO2 tetragonal-to-monoclinic transformation, which was attributed to increased grain boundary diffusivity. Conventional sintering at low temperatures resulted in the formation of “rods” of an Al2O3-rich phase which grew from a low-melting B2O3-rich liquid.

Keywords

Polymer Microstructure Microwave Boron Crystalline Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Duwez, R. H. Willens andW. Klement,J. Appl. Phys. 31 (1960) 1136.Google Scholar
  2. 2.
    P. T. Sargeant andR. Roy,J. Amer. Ceram. Soc. 50 (1967) 500.Google Scholar
  3. 3.
    M. C. Brockway andR. R. Wills, “Rapid Solidification of Ceramics — A Technology Assessment”, Metals and Ceramics Information Center Report MCIC 84–49 (Battelle Columbus Laboratories, Columbus, Ohio, 1984).Google Scholar
  4. 4.
    A. Revcolevschi andJ. Livage, in “Treatise on Materials Science and Technology”, Vol. 20, edited by H. Herman (Academic, New York, 1981) p. 73.Google Scholar
  5. 5.
    J. D. Katz andR. D. Blake,Ceram. Bull. 70 (1991) 1304.Google Scholar
  6. 6.
    J. Eastman, K. Sickafus, J. Katz, S. Boeke, R. Blake, C. Evans, R. Schwarz andY. Liao,Mater. Res. Soc. Symp. Proc. 189 (1991) 273.Google Scholar
  7. 7.
    J. McKittrick, G. Kalonji andT. Ando,J. Non-Cryst. Solids 94 (1987) 163.Google Scholar
  8. 8.
    T. Whitney, V. Jayaram, C. G. Levi, andR. Mehrabian, in “Solidification Processing of Eutectic Alloys”, edited by D. M. Stefanescu, G. J. Abbaschian and R. FJ. Bayuzick (Metallurgical Society, Warrendale, PA, 1988) p. 199.Google Scholar
  9. 9.
    N. Claussen, G. Lindemann andG. Petzow,Ceram. Int. 9 (3) (1983) 83.Google Scholar
  10. 10.
    P. J. M. Gielisse andW. R. Foster,Nature 195 (1962) 70.Google Scholar
  11. 11.
    L. A. Xue andI. W. Chen,J. Amer. Ceram. Soc. 74 (1991) 2011.Google Scholar
  12. 12.
    R. C. Garvie, R. H. J. Hannink andM. V. Swain,J. Mater. Sci. Lett. 11 (1983) 437.Google Scholar
  13. 13.
    B. N. Claussen andM. Rühle,Adv. Ceram. 3 (1981) 137.Google Scholar
  14. 14.
    R. C. Buchanan andC. M. Wilson,Gov. Rep. Announce. Index 85 (8) (1985) 111.Google Scholar
  15. 15.
    M. P. Harmer, in “Structure and Properties of MgO and Al2O3 Ceramics”, Advances in Ceramics, Vol. 10, edited by W. D. Kingery (American Ceramic Society, Columbus, OH, 1984) p. 679.Google Scholar
  16. 16.
    A. Heuer, N. Claussen, W. M. Kriven andM. Rühle,J. Amer. Ceram. Soc. 65 (1982) 642.Google Scholar
  17. 17.
    J. Baumard andP. Abelard, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Rühle and A. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 555.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. McKittrick
    • 1
  • B. Tunaboylu
    • 1
  • J. Katz
    • 2
  1. 1.Materials Science ProgramUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations