Skip to main content
Log in

A comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The contact angles of liquid silver-copper oxide/alumina and liquid copper-copper oxide/alumina systems were determined using the sessile drop method. Copper oxide (CuO) additions of 1.5–10.0 wt% were made. Temperatures of 970–1250 °C for the silver-based alloys and 1090–1300 °C for the copper-based alloys were studied. Minimum contact angles of 42±8 and 64±7 ° were obtained for the copper-copper oxide alloys and the silver-copper oxide alloys, respectively. The contact angle was approximately constant for the silver-copper oxide alloy within the immiscible liquid composition range. While the contact angles were higher for the silver-based alloys relative to the copper-based alloys, successful infiltration of a porous alumina sample was achieved at only 1050 °C for a Ag-10 wt% CuO alloy. Compression tests on infiltrated samples revealed similar compressive strengths for alumina samples infiltrated with silver-copper oxide alloys, silver-copper-copper oxide alloys and copper-copper oxide alloys. The compressive fracture strength for the infiltrated samples was an order of magnitude higher than the fracture strength of the porous alumina body without infiltration. Although silver-based alloys are more expensive than comparable copper-based alloys, in many applications the additional cost may be offset by lower processing or brazing temperatures, improved thermal and electrical conductivity, and improved toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Ritland andD. W. Ready,Ceram. Engng. and Sci. Proc. 14 (1993) 896.

    Article  CAS  Google Scholar 

  2. Y. Yoshino andT. Shibata,J. Amer. Ceram. Soc. 75 (1992) 2756.

    Article  CAS  Google Scholar 

  3. C. Beraud, M. Courbiere, C. Esnouf, D. Juve andD. Treheux,J. Mater. Sci. 24 (1989) 4545.

    Article  CAS  Google Scholar 

  4. S. T. Kim andC. H. Kim,ibid. 27 (1992) 2061.

    Article  CAS  Google Scholar 

  5. Y. Yoshino,J. Amer. Cer. Soc. 72 (1989) 1322.

    Article  CAS  Google Scholar 

  6. B. Gallois andC.H.P. Lupis,Met. Trans. B 12B (1981) 549.

    Article  CAS  Google Scholar 

  7. P. D. Ownby andJ. Liu,J. Adhesion Sci. Technol. 2 (1988) 255.

    Article  CAS  Google Scholar 

  8. T. E. O'Brien andA.C.D. Chaklader,J. Amer. Ceram. Soc. 57 (1974) 329.

    Article  CAS  Google Scholar 

  9. A. C. D. Chaklader, A. M. Armstrong andS. K. Misra,ibid. 51 (1968) 630.

    Article  CAS  Google Scholar 

  10. M. B. Baldwin, MS Thesis #4380, Colorado School of Mines, Golden, CO (1993).

    Google Scholar 

  11. Y. Naidich,Prog. in Surf. and Membr. Sci. 14 (1981).

  12. S. P. Mehorta andA. C. D. Chaklader,Met. Trans. B 16B (1985) 567.

    Google Scholar 

  13. D. Chatain, M. L. Muolo andR. Sangiorgi, “Designing ceramic interfaces: understanding and tailoring interfaces for coating, composites and joining applications”, (CEC Publ., Luxembourg, 1993) p. 359.

    Google Scholar 

  14. G. Bernard andC. H. P. Lupis,Met. Trans. 2 (1971) 2991.

    Article  CAS  Google Scholar 

  15. J. E. McDonald andJ. G. Eberhart,Trans. AIME 233 (1965) 512.

    CAS  Google Scholar 

  16. B.C. Allen andW. D. Kingery,ibid. 215 (1959) 30.

    CAS  Google Scholar 

  17. G. Bernard andC.H.P. Lupis.Met. Trans. 2 (1971) 555.

    Article  CAS  Google Scholar 

  18. T. Massalski (Ed.), “Binary alloy phase diagrams” (ASM International, Materials Park, OH, 1990) p. 1447.

    Google Scholar 

  19. Z. B. Shao, K. R. Liu, L. Q. Liu, H. K. Liu andS.-X. Dou,J. Amer. Ceram. Soc. 76 (1993) 2663.

    Article  CAS  Google Scholar 

  20. “Thin film substrate technical specifications 10-2-0692” (Coors Ceramics Company-Electronics, Golden, CO).

  21. A. Meier, PR. Chidambaram, v. Gabriel andG. R. Edwards in “Processing and fabrication of advanced materials III” (Conference Proceedings, TMS/ASM Materials Week, Oct. 1993, Pittsburgh) p. 47.

  22. L. R. Fisher,J. Colloid Interface Sci. 72 (1979) 200.

    Article  CAS  Google Scholar 

  23. T. Iida andR. I. L. Guthrie, “The physical properties of liquid metals” (Clarendon Press, Oxford, 1988).

    Google Scholar 

  24. A. Butts, “Copper: the science and technology of the metal, its alloys and compounds” (Reinhold Publishing Corp., New York, 1954), Ch. 17, 19, 22.

    Google Scholar 

  25. A. Butts andC. D. Coxe, “Silver: economics, metallurgy and use” (D. Van Nostrand Company, Inc., Princeton, NJ, 1967), Ch. 7–9, 20.

    Google Scholar 

  26. N. Birks andG. H. Meier, “Introduction to high temperature materials” (Edward Arnold (Publishers) Ltd, London, 1993).

    Google Scholar 

  27. L. H. Van Vlack, “Elements of materials science and engineering”, 5th Ed (Addison-Wesley Publishing Company, Reading, MA, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, A.M., Chidambaram, P. & Edwards, G.R. A comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline alumina. J Mater Sci 30, 4781–4786 (1995). https://doi.org/10.1007/BF01154485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154485

Keywords

Navigation