Advertisement

manuscripta mathematica

, Volume 17, Issue 1, pp 67–71 | Cite as

Tchebyshev systems that cannot be transformed into Markov systems

  • Roland Zielke
Article

Abstract

The linear hull of a Tchebyshev system is called a Haar-space. A basis f1,...,fn of an n-dimensional Haar-space is called a Markov basis if f1,...,fi form a Tchebyshev system for each i=l,...,n. It is shown by suitable examples that for all n≥3 there exist Haar-spaces without a Markov basis.

Keywords

Number Theory Algebraic Geometry Topological Group Linear Hull Markov System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hadeler, K.P.: Remarks on Haar systems. J.Appr.Th. 7, 59–62, 1973.Google Scholar
  2. [2]
    Karlin, S. and W.J.Studden: Tchebyshev systems: With applications in analysis and statistics. John Wiley and Sons, 1966.Google Scholar
  3. [3]
    Nemeth, A.B.: Transformations of the Chebyshev Systems. Mathematica (Cluj) 8, 315–333, 1966.Google Scholar
  4. [4]
    Nemeth, A.B.: About the extension of the domain of definition of the Chebyshev systems defined on intervals of the real axis. Mathematica (Cluj) 11 (1969), 307–310.Google Scholar
  5. [5]
    Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag d. Wiss., Berlin, 1966.Google Scholar
  6. [6]
    Volkov, V.I.: Some properties of Chebyshev systems, Kalinin Gos. Ped. Inst. Uc. Zap. 26, 41–48, 1958.Google Scholar
  7. [7]
    Zielke, R.: On transforming a Tchebyshev-system into a Markov-system. J. of Appr. Th., 9 (1973), 357–366.Google Scholar
  8. [8]
    Zie1ke, P.: Alternation properties of Tchebyshev-systems and the existence of adjoined functions, 10 (1974), 172–184Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Roland Zielke
    • 1
  1. 1.Lehrstuhl für Biomathematik der Universität TübingenTübingenDeutschland

Personalised recommendations