Skip to main content
Log in

Quantum action principle in curved space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Schwinger's action principle is formulated for the quantum system which corresponds to the classical system described by the LagrangianL c(\(\dot x\), x)=(M/2)gij(x)\(\dot x\) i \(\dot x\) j−v(x). It is sufficient for the purpose of deriving the laws of quantum mechanics to consider onlyc-number variations of coordinates and time. The Euler-Lagrange equation, the canonical commutation relations, and the canonical equations of motion are derived from this principle in a consistent manner. Further, it is shown that an arbitrary point transformation leaves the forms of the fundamental equations invariant. The judicious choice of the quantal Lagrangian is essential in our formulation. A quantum mechanical analog of Noether's theorem, which relates the invariance of the quantal action with a conservation law, is established. The ambiguities in the quantal Lagrangian are also discussed and it is pointed out that the requirement of invariance is not sufficient to determine uniquely the quantal Lagrangian and the Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kawai,Prog. Theoret. Phys. 48, 2082 (1972).

    Google Scholar 

  2. T. Kawai,Prog. Theoret. Phys. 49, 1777 (1973).

    Google Scholar 

  3. H. Kamo and T. Kawai,Prog. Theoret. Phys. 50, 680 (1973).

    Google Scholar 

  4. H. Kamo and T. Kawai,Lett. Nuovo Cimento 7, 571 (1973).

    Google Scholar 

  5. B. S. DeWitt,Rev. Mod. Phys. 29, 377 (1957).

    Google Scholar 

  6. W. Yourgrau and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory, 3rd ed. (W. B. Saunders, Philadelphia and Pitman, London, 1968).

    Google Scholar 

  7. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).

    Google Scholar 

  8. I. W. Mayes and J. S. Dowker,J. Math. Phys. 14, 434 (1973).

    Google Scholar 

  9. K. S. Cheng,J. Math. Phys. 13, 1723 (1972).

    Google Scholar 

  10. K. S. Cheng,J. Math. Phys. 14, 980 (1973).

    Google Scholar 

  11. L. Cohen,J. Math. Phys. 11, 3296 (1970).

    Google Scholar 

  12. F. J. Testa,J. Math. Phys. 12, 1471 (1971).

    Google Scholar 

  13. G. S. Um,J. Math. Phys. 15, 220 (1974).

    Google Scholar 

  14. J. Schwinger,Phys. Rev. 82, 914 (1951).

    Google Scholar 

  15. J. M. Charap,J. Phys. 6, 393 (1973).

    Google Scholar 

  16. T. Kimura, T. Ohtani, and R. Sugano,Prog. Theoret. Phys. 48, 1395 (1972).

    Google Scholar 

  17. F. J. Bloore, L. Routh, and J. Underhill,Nucl. Phys. B 55, 637 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, T. Quantum action principle in curved space. Found Phys 5, 143–158 (1975). https://doi.org/10.1007/BF01100323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01100323

Keywords

Navigation