Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 1, pp 136–139 | Cite as

Reconstruction of holomorphic and pluriharmonic functions in circular domains from their values on a torus

  • M. L. Agranovskii
  • L. A. Aizenberg
Article

Keywords

Circular Domain Pluriharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. S. Mkrtchyan, “On a certain integral representation of functions holomorphic in starlike domains in Cn,” in: Holomorphic Functions of Several Complex Variables [in Russian], Inst. Fiz. Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk (1976), pp. 97–106.Google Scholar
  2. 2.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  3. 3.
    L. A. Aizenberg and Sh. A. Dautov, “Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary,” Mat. Sb.,99, No. 3, 342–355 (1976).Google Scholar
  4. 4.
    L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  5. 5.
    M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishat-skii, Ill-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  6. 6.
    A. Sadullaev, “A boundary uniqueness theorem in Cn,” Mat. Sb.,101, No. 4, 568–583 (1976).Google Scholar
  7. 7.
    S. Kosbergenov and T. N. Nikitina, “On two analogues of Poisson's formula for functions holomorphic or plurisubharmonic in n-circular domains,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 21–23 (1984).Google Scholar
  8. 8.
    S. Kosbergenov, “Generalization of Schwarz's and Poisson's formulas in relatively complete n-circular domains,” Sib. Mat. Zh.,27, No. 5, 198 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • M. L. Agranovskii
  • L. A. Aizenberg

There are no affiliations available

Personalised recommendations