Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 1, pp 44–53 | Cite as

Invariant orderings in solvable Lie groups

  • V. M. Gichev
Article

Keywords

Invariant Ordering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    É. B. Vinberg, “Invariant convex cones and orderings in Lie groups,” Funkts. Anal. Prilozhen.,14, No. 1, 1–13 (1980).Google Scholar
  2. 2.
    G. I. Ol'shanskii, “Invariant cones in Lie algebras, Lie semigroups, and holomorphic discrete series,” Funkts. Anal. Prilozhen.,15, No. 4, 53–66 (1981).Google Scholar
  3. 3.
    S. M. Paneitz, “Invariant convex cones and causality in semisimple Lie algebras and groups,” J. Funct. Anal.,43, No. 2, 313–359 (1981).Google Scholar
  4. 4.
    G. I. Ol'shanskii, “Invariant orderings in simple Lie groups: solution of a problem of É. B. Vinberg,” Funkts. Anal. Prilozhen.,16, No. 4, 80–81 (1982).Google Scholar
  5. 5.
    G. I. Ol'shanskii, “Convex cones in symmetric Lie algebras, Lie semigroups and invariant causal structures (orderings) on pseudo-Riemannian spaces,” Dokl. Akad. Nauk SSSR,265, No. 3, 537–541 (1982).Google Scholar
  6. 6.
    V. M. Gichev, “Invariant algebras of functions on Lie group,” Sib. Mat. Zh.,20, No. 1, 23–36 (1979).Google Scholar
  7. 7.
    A. V. Levichev, “Lie algebras that admit elliptic semialgebras,” Funkts. Anal. Prilozhen.,20, No. 2, 72–73 (1986).Google Scholar
  8. 8.
    J. Hilgert and K. H. Hofmann, “Lorentzian cones in real Lie algebras,” Monatsh. Math.,100, No. 3, 183–210 (1985).Google Scholar
  9. 9.
    A. K. Guts, “Axiomatic theory of relativity,” Usp. Mat. Nauk,37, No. 2, 39–79 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. M. Gichev

There are no affiliations available

Personalised recommendations