Siberian Mathematical Journal

, Volume 30, Issue 1, pp 36–44 | Cite as

Question of equivalence of the classical methods of summation of orthogonal series

  • V. F. Gaposhkin


Classical Method Orthogonal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Kaczmarz, “Über die Reihen von allgemeinen Orthogonalfunktionen,” Math. Ann.,96, 148–151 (1925).Google Scholar
  2. 2.
    A. Zygmund, “Sur l'application de la première moyenne arithmetique dans la théorie des series orthogonales,” Fundam. Math.,10, 356–362 (1927).Google Scholar
  3. 3.
    S. Kaczmarz and H. Steinhaus, Theory of Orthogonal Series [Russian translation], Fizmatgiz, Moscow (1958).Google Scholar
  4. 4.
    G. Alexits, Problems of Convergence of Orthogonal Series [Russian translation], IL, Moscow (1963).Google Scholar
  5. 5.
    O. A. Ziza, “The summability of orthogonal series by Euler's methods,” Mat. Sb.,66, No. 3, 354–378 (1965).Google Scholar
  6. 6.
    G. Hardy, Divergent Series [Russian translation], IL, Moscow (1951).Google Scholar
  7. 7.
    F. Moricz, “A generalization of some classical inequalities in the theory of orthogonal series,” Mat. Zametki,17, No. 2, 219–230 (1975).Google Scholar
  8. 8.
    R. J. Sterfling, “Convergence properties of Sn under moment restrictions,” Ann. Math. Stat.,41, No. 4, 1235–1248 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. F. Gaposhkin

There are no affiliations available

Personalised recommendations